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Abstract

The emergence of large-scale connectivity from the small-scale connectedness is the
signature of a percolation transition and therefore, the system always exhibits a global
connectivity beyond this transition point. The small-scale connectivity is significantly
influenced by the disorder present in the system. In the present thesis, we introduce
four different lattice percolation models and study how the percolation properties of a
system are affected by different sources of disorder.

First, we study the percolation properties of a system by occupying randomly the
sites of a square lattice with probability p by disks with uniformly distributed radii.
Using three different rules for the criterion of defining a connected bond between
two neighboring occupied sites and tuning the parameters characterizing the radii
distribution, we find that the percolation threshold always varies continuously within
the site percolation threshold to unity. The approach of the percolation threshold to
its two limiting values are characterized by two distinctly different exponents and are
found to be independent of any specific rule.

Further, we extend this study by considering sinusoidal time variations of the
radii of disks with initial random phase angles, but with same maximal radius, on a
fully occupied lattice. By tuning the maximal value of the disks radii, two distinct
percolation transitions are observed. Interestingly, we find that the global transmission
of information is possible even if the clusters are of finite sizes.

In another model, the sites of a regular lattice are occupied by atoms with probability
p and then, every atom is colored by selecting randomly one of the n distinct colors
with probability q. The bonds having two different colored atoms at their opposite
ends are only declared as connected. Accordingly, a non-trivial dependence of the
percolation threshold on the values of n and q has been observed.

Lastly, we introduce a random sequential adsorption model where the dimers are
adsorbed sequentially and irreversibly onto the sites of a square lattice after going
through a well-defined relaxation dynamics. When a new incoming dimer partially
overlaps with a previously adsorbed dimer, the relaxation dynamics is triggered and
during relaxation, a sequence of dimer displacements occur. The post-relaxation state
is a monolayer formation of the adsorbed dimers. We investigate the role of relaxation
mechanism on the percolation and jamming transitions. We find that the relaxation
dynamics helps the system to percolate in comparison to the model without relaxation.

Using extensive numerical simulations we conclude that although the percolation
threshold is dependent on the specific source of disorder, all four variants of the
percolation models belong to the percolation universality class.
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Chapter 1

Introduction

1.1 Phenomenon of Percolation

The phenomenon of percolation can simply be described by using the following example.

Let us consider a rectangular piece of porous material, such as porous rock containing

a collection of pores which are distributed randomly over space. Now, we place the

sample horizontally and ask the question, if some liquid is poured on the top surface,

will it appear at the bottom? The answer could be yes, or no, depending on the volume

fraction p of these pore spaces, i.e., porosity of the material. When the porosity p

exceeds a critical value pc, an interconnected pathway through the pore spaces spanning

from the top to bottom of the sample appears and hence the liquid can reach the

bottom surface propagating through the pores. The existence of the critical value of

porosity in this description is particularly of great interest as the system exhibits many

interesting features only in the vicinity this point.

The phenomenon of percolation was first introduced by Broadbent and Hammersley

in 1957 [1] to understand the mechanism of charcoal gas masks used in coal mines.

For the mask to work properly, the pore spaces within the carbon granules should

be sufficiently interconnected such that clean air can penetrate through them while

simultaneously blocking the poisonous gas particles by the process of adsorption. This
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Chapter 1 1.1. Phenomenon of Percolation

type of filtration process is often observed in our daily lives. One of the natural examples

is rain water which is not directly drinkable, but when it passes through the spaces

between the grains of soil from layer to layer, the filtration process takes place. Thus,

the impurities are filtered out and water becomes fresh groundwater.

Though percolation was introduced in 1957, later it was realized that the concept

essentially was rooted in the study of gelation in polymers by Flory in 1940 [2–4]. The

process of gelation involves the formation of macromolecules from small monomers [5].

For instance, if we place gelatine, a fluid consisting of a large number of small monomers

(sol), in a refrigerator, it starts polymerizing and eventually forms a sufficiently large

solid macromolecule (gel) that extends from one end of the system to the other [5].

Similarly, while boiling an egg, gradual formation of the chemical bonds between its

constituent small molecules eventually spans the entire system and thus, transforms the

egg from liquid-like to solid-like object [6]. The emergence of such a macroscopically

connected object is the primary concern in the theory of percolation.

The field of percolation attracted to the statistical physics community when it had

been revealed that the models of percolation (described later) exhibit universal features

of the critical phenomena [7–10]. The critical phenomena are observed only in close

proximity to the phase transition point, called the critical point. Different observables

either diverge or vanish as the critical point is approached and their behavior close to

this point are described by power-laws of the distance from the critical point in the

parameter space. For example, when the temperature T of a ferromagnet is increased

towards the Curie temperature Tc, the magnetization m vanishes continuously close to

Tc as a power law: m ∼ (Tc − T )β [7]. The exponents characterizing these power-laws

are known as critical exponents. Typically, their values are found to be non-integer.

For instance, it was estimated experimentally that for the ferromagnet CrBr3 the

value of the critical exponent β = 0.368± 0.005 [11]. In the regime T < Tc, different

domains of the system exhibit correlations resulting in a non-zero net magnetization.

The sizes of these correlated domains fluctuate due to thermal fluctuations and as

2



Chapter 1 1.1. Phenomenon of Percolation

a result, the magnetization also fluctuates. When T approaches Tc from below, the

fluctuations in magnetization become so large that all length scales become relevant.

In this regime, the magnetized domains are found to be statistically self-similar on all

length scales, i.e., the structure of a part of the domain is statistically similar to itself

upon repeated magnification [7, 12]. Such self repeating patterns are often observed in

nature, such as coastlines, mountain ranges, river networks, Saturn rings, etc., [13–15].

These particular patterns are known as fractals and are characterized by the non-integer

fractal dimension.

The critical behavior of the system is characterized by the set of critical exponents.

Remarkably, the experimental values of the critical exponents for different magnetic

materials suggest that they are not material specific. More interestingly, the critical

exponents obtained for the liquid-gas system are also seen to match with the exponents

of the magnetic systems [7, 10]. Very close to the critical point the system specific

microscopic details essentially become unimportant and therefore, a class of widely

different systems are found to exhibit the same critical behavior. This remarkable

feature is called universality and the set of critical exponents defines the universality

class.

The underlying concept of percolation can be applied to study the critical behavior

of widely different systems including many great practical applications [6, 16–19]. One

of the most common areas where one finds the applicability of the theory of percolation

is the extraction of oil from oil reservoirs. The most important task in the oil industry

is to predict how much oil one can extract by placing a well at a random location

in the oil field. During the oil recovery process, oil contained inside the pores in

a reservoir naturally flows through a series of pores. Therefore, for the prediction

purposes, oil industry strongly depends on the estimation of the porosity of the sample

collected from the reservoir. If the measurement yields a value of the porosity p < pc

of the sample, then the network of pores connecting the well extends only to a small

portion of the reservoir and thus, they end up extracting a limited amount of oil. For

3



Chapter 1 1.1. Phenomenon of Percolation

(a) (b)

Figure 1.1: Illustration of the bond percolation model on a 24× 24 square lattice for
two different values of the bond occupation probability p, namely p = 0.45 (a) and
p = 0.55 (b). A spanning path from the top to bottom of the system exists for p = 0.55.

economic purposes, they extract oil only from the reservoirs for which p > pc, resulting

in the production of a large amount of oil. Similarly, prediction of the risk of water

contamination due to the transport from the nuclear waste deposits essentially requires

the knowledge of pc [20]. Other problems, where the theory of percolation has been

proven to be relevant include the propagation of fires in forests [21], spreading of

infectious diseases in the form of epidemics [22, 23], propagation of information through

wireless sensor networks [24–26], public opinion formation [27, 28], prediction of the

agricultural soil quality for optimal yields [20, 29], etc.

The models of percolation provide useful insights about how the large-scale connec-

tivity appears in such diverse types of natural and artificial systems [6, 16–19, 30–32].

In the following, we start by describing two simplest models of percolation on a regular

lattice. Consider an electrical network of the mixture of conductors and insulators

as illustrated in Fig. 1.1(a). The bonds on the lattice are occupied randomly and

independently by the conductors with probability p or they are kept vacant (i.e., they

are insulators) with probability (1 − p). The system is placed between two busbars

which are connected to an external voltage source. Clearly, for p = 0, no conducting

bonds are present and the system is an insulator. In the other extreme, at p = 1, all

4



Chapter 1 1.1. Phenomenon of Percolation

the bonds are conductors and current flows through the system. Therefore, tuning

the value of p from zero, at some intermediate critical value of p = pc, known as the

percolation threshold, the circuit reads a non-zero value of current for the first time.

Clearly, at pc the system undergoes a phase transition from a non-conducting phase to

a conducting phase. This particular version of the percolation model is referred as the

bond percolation in two dimensions [6].

In the context of fluid flow through porous media, the occupied and vacant bonds in

the above description correspond to the open pores and solid rock matrix, respectively.

For p > pc, if fluid is injected at one side of the system, it will certainly arrive at the other

side propagating through the series of open pores. Similarly, in gelation, the fraction of

chemical bonds formed between the monomers is represented by the density p of the

occupied bonds and hence, the point p = pc marks the sol-gel transition point. Moreover,

the study of Fisher and Essam revealed the one to one correspondence between the

model of polymerization and the model of percolation on Bethe lattice [33, 34].

Instead of lattice bonds, the percolation model can also be described by occupying

randomly the sites of a regular lattice with probability p, and is recognized as the

site percolation [6]. In this model, any two adjacent occupied sites are considered as

connected. One can imagine this in two dimensions by assigning a metallic disk of

radius 1/2 at every occupied site of the lattice with unit lattice constant. A group of

such occupied sites interlinked through their neighboring connections forms a cluster.

Therefore, any two occupied sites, separated at a certain distance, can be reachable

by their nearest neighbor connections only if they belong to the same cluster. At any

arbitrary intermediate value of p, there exists a number of clusters of different shapes

and sizes, the properties of which significantly depend on the value of p [35, 36]. The

size s of a cluster is defined as the number of sites in the cluster. The largest one among

these clusters monotonically increases in size with increasing the value of p, and an

incipient infinite cluster appears in the system when p exceeds a critical value of p = pc.

For p < pc, the clusters are all finite sizes and for p > pc, the largest cluster scales

5



Chapter 1 1.2. Percolation Threshold

linearly with the volume of the system. Only at p = pc, the largest cluster exhibits

self-similar structure.

The term ‘infinite’ mentioned above is only applicable for the infinitely large system.

For a finite-size system, at p = pc, for the first time the size of the largest cluster

becomes macroscopically large and it spans between two opposite sides of the lattice.

Therefore, in the regime p > pc, there always exists a ‘global connectivity’ through the

spanning path on the largest cluster. This type of cluster is often termed as the ‘giant

cluster’. Clearly, pc marks the percolation transition point between the ‘percolating

phase’ characterized by the existence of a global connectivity and the ‘non-percolating

phase’ where such a global connectivity is absent.

Unlike the thermodynamic phase transitions observed in the magnetic systems

or liquid-gas systems, the percolation transition is completely a geometrical phase

transition. However, in a seminal work published in 1969, Kasteleyn and Fortuin

demonstrated an interesting mapping between the percolation and the q-state Potts

model related to the magnetic system [37]. For q = 2, Potts model reduces to the

well-known Ising model. Specifically, they showed that the q-state Potts model in the

limit q → 1 corresponds to the bond percolation.

Percolation is now regarded as one of the simplest models for studying the order-

disorder phase transition. The nature of transition is continuous for both the models

described above and they belong to the same universality class. Moreover, the percola-

tion transition is so robust that a large number of variants of the percolation models

(some of them are described in Sec. 1.4 and in the subsequent Chapters) exhibit the

same critical behavior.

1.2 Percolation Threshold

Precise determination of the percolation threshold pc is essential in studying the critical

behavior of the percolation models, since many non-trivial features are observed only

6



Chapter 1 1.2. Percolation Threshold

(a) (b)

Figure 1.2: The lattices (red) and their corresponding dual lattices (black). (a) The
square lattice is a self-dual lattice. (b) The triangular lattice is the dual of the
honeycomb lattice.

in the vicinity of pc. Unfortunately, there are only a few class of lattice geometries

in two dimensions for which the exact thresholds are known [31, 38]. For example,

pc = 1/2 for bond percolation on the square lattice. On the triangular lattice, pc =

2 sin(π/18) and 1/2 for bond and site percolation, respectively. On the honeycomb

lattice, pc = 1 − 2 sin(π/18) for bond percolation. The concepts of dual-graph [Figs.

1.2(a) and (b)] and star-triangle transformation are often used in finding these exact

values. For example, the bond percolation threshold on a regular square lattice can be

obtained using the graph duality as follows. For any bond configuration on the lattice

G, there exists a corresponding bond configuration on the dual lattice H such that if a

bond is occupied on the lattice, corresponding bond on the dual lattice is kept vacant.

Therefore, the sum of the bond densities on the lattices G and H equals unity. This

implies that at their corresponding percolation thresholds,

pGc + pHc = 1. (1.1)

Since the square lattice is self-dual [Fig. 1.2(a)], it validates the relation pGc = pHc . This

eventually leads to pc = 1/2 from Eq. (1.2). However, the site percolation thresholds for

the square and honeycomb lattices are still not known exactly. Similarly, exact thresholds

for other percolation models in two dimensions such as AB percolation (described

7



Chapter 1 1.2. Percolation Threshold
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Figure 1.3: (a) Plot of the average number n(p, L) of clusters per site for the site
percolation on square lattice of sizes L = 256 (black), 512 (red), and 1024 (blue). The
maximum of the curves occur at p ≈ 0.2696, 0.2697, and 0.2698, respectively. The
region around the maximum has been zoomed in (b). Apparently, the system size
dependence of n(p, L) around this point is negligibly small.

in Sec. 1.4.2), percolation models described in the subsequent Chapters, etc., seem

implausible. Furthermore, in higher dimensions exact thresholds are not known for any

lattice geometries. In such cases, numerical simulations play a key role in determining

the high precision values for pc. Until now, the best known value of the percolation

threshold for the site percolation on square lattice is pc(sq)=0.59274605079210(2) [39].

Percolation thresholds for many other lattices are listed in Ref. [40]. In the following,

we describe a numerical method for evaluating the value of pc.

1.2.1 Determination of the Percolation Threshold

Let us consider the site percolation model on a square lattice of size L×L with periodic

boundary conditions. One by one, the vacant sites of an initially empty square lattice

are occupied randomly and independently. At any arbitrary stage, the fraction of

occupied sites is denoted by p. With increase in the value of p from zero, average

number of distinct clusters n(p, L) first increases, attains a maximum at p ≈ 0.27 and

after that it decreases when the merging of clusters of different sizes dominate. This

variation is exhibited in Fig. 1.3 for the entire range of p. Using Hoshen–Kopelman
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Chapter 1 1.2. Percolation Threshold
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Figure 1.4: Variation of the size of the largest cluster smax(p, L) and the second largest
cluster smax2(p, L) scaled by L2 in a typical run for the site percolation on square lattice
of size L = 512. The maximal jump in the size of the largest cluster occurs at ≈ 0.5919
for this run.

algorithm [41] or Newman–Ziff algorithm [42], one can efficiently identify different

clusters when p is continuously varied. In a typical run, the size of the largest cluster

smax increases monotonically with increasing p, but the size of the second largest cluster

does not. Near the percolation transition, the second largest cluster may merge with

the largest cluster several times and consequently, the largest cluster makes a number

of jumps in size (see Fig. 1.4). The maximal jump ∆msmax in the size of the largest

cluster takes place at a specific value of p, when the maximum of the second largest

cluster merges with the largest cluster. This particular value of p is considered as the

percolation threshold pαc for the configuration α [35, 36, 43]. Averaging over many such

independent configurations gives an estimate of the percolation threshold pc(L) = 〈pαc 〉

for the lattice size L. The entire set of calculations is then repeated for different values

of L. These pc(L) value are then extrapolated in the limit L→∞ using the equation

pc(L) = pc − AL−1/ν . (1.2)

Tuning the value of ν, the best fit of data by least squares method finally determines

the asymptotic value of pc. We explain the reason of following the Eq. (1.2) for the

extrapolation in Sec. 1.3.1.
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Chapter 1 1.3. Critical Behavior of the Ordinary Percolation

1.3 Critical Behavior of the Ordinary Percolation

The term ‘ordinary’ refers to the specific case of percolation where the occupation

of sites (bonds) takes place randomly and independently. As mentioned before, the

onset of criticality is characterized by the scale-free behavior of several observables.

In the following, we enumerate some such quantities related to the percolation. To

demonstrate the critical behavior near pc, we consider the site percolation model on

L× L square lattice.

1.3.1 Correlation Length

Characteristic feature of the continuous phase transition is the divergence of the

correlation length. It is a measure of the distance over which the microscopic details

of a system are correlated and its value is calculated using a correlation function g(r).

For the percolation models, the correlation function g(r) is defined as the probability

that a pair of occupied sites separated by a distance r belong to the same cluster.

This probability is expected to decrease with increasing the distance of separation

r. Specifically, it is found that g(r) ∼ exp(−r/ξ), where ξ is the length scale that

characterizes the decay of g(r) and is known as the correlation length.

For p < pc, the clusters are all finite sizes resulting in a small finite value for the

correlation length ξ, its value increases as p is increased, and when p→ pc, it diverges

as

ξ(p) ∼ |p− pc|−ν , (1.3)

where ν is the correlation length exponent and its value if 4/3 in two dimensions [6].

Usually, in calculating g(r) the largest cluster is not considered. Consequently, as pc

is approached from both the sides, the correlation length diverges. For a finite-size

system ξ can be at most L and that is attained at p = pc(L) [35]. Thus, from Eq. (1.3)

one gets the specific form given in Eq. (1.2): pc(L) = pc − AL−1/ν .
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Figure 1.5: (a) The variation of the order parameter Ω(p, L) has been shown for
different values of L = 128 (black), 256 (red), 512 (green), and 1024 (blue) for site
percolation on square lattice. (b) Scaling plot of the same data using pc = pc(sq)=
0.59274605079210 [39], ν = 4/3, and β/ν = 5/48, exhibiting an excellent data collapse.

1.3.2 Order Parameter

Every phase transition is characterized by an order parameter whose value remains zero

in one phase and finite in another phase. For percolation, average size of the largest

cluster per site is considered as the order parameter Ω(p, L) = 〈smax(p, L)〉/Ld, where d

is the Euclidean dimension. When p approaches pc from the above, the order parameter

vanishes continuously in the limit L→∞ as

Ω(p) ∼ (p− pc)β. (1.4)

The value of the critical exponent β = 5/36 in two dimensions [6]. In Fig. 1.5(a), we

exhibit the variation of the order parameter with p for different system sizes L. The

curves become sharper and sharper when L is increased systematically. To evaluate

the critical exponents using finite size systems, usually finite-size scaling analyses are

performed. This involves suitable scaling of the abscissa and ordinate such that the data

for different values of L collapses onto each other and eventually forms a single curve.

Figure 1.5(b) shows the scaling plot of the order parameter, implying the following
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Figure 1.6: For the site percolation on square lattice, the average value of the maximal
jump in the size of the largest cluster 〈∆msmax(pc, L)〉/L2 has been plotted against the
size L of the lattice on a log-log scale for L = 128, 256, 512, 1024, 2048, and 4096. The
slope of the fitted straight line is −0.1039(5).

finite-size scaling form

Ω(p, L) = L−β/νF [(p− pc)L1/ν ], (1.5)

where F is called the scaling function. For the regime p > pc, the function F [x] with

x = (p− pc)L1/ν obeys a power-law F [x] ∼ xβ, consistent with Eq. (1.4).

Largest Cluster and its Maximal Jump

At p = pc, the scaling form in Eq. (1.5) suggests that Ω(pc, L) ∼ L−β/ν and therefore,

the average size of the largest cluster scales with L as

〈smax(pc, L)〉 ∼ Ld−β/ν = Ldf . (1.6)

Therefore, the largest cluster at p = pc is a fractal with the fractal dimension df .

The average value of the maximal jump in the size of the largest cluster 〈∆msmax(pc, L)〉

at p = pc scaled by Ld decreases with L as

〈∆msmax(pc, L)〉/Ld ∼ L−(d−df ). (1.7)
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Figure 1.7: The cluster size distribution D(s) at p = pc has been exhibited on a log-log
scale for different values of L = 128 (black), 256 (red), 512 (green), and 1024 (blue).
The largest cluster has been excluded in the calculation. The slope of the curves in the
linear region have been found to be ≈ 2.05.

Figure 1.6 shows the plot of 〈∆msmax(pc, L)〉/L2 as function of L on a double logarithmic

scale for the square lattice. An excellent fit of the data by a straight line with a slope

−0.1039(5), in close agreement with df − 2 indicates that the second largest cluster

has the same fractal dimension as the largest cluster [43].

1.3.3 Cluster Size Distribution

Near p = pc, the cluster size distribution D(s) obeys the following scaling form

D(s) ∼ s−τD[(p− pc)sσ], (1.8)

where the scaling function D[x] is a constant at x = 0. Therefore, at p = pc, the cluster

size distribution follows the power-law:

D(s) ∼ s−τ . (1.9)

The exact values of τ and σ in two dimensions are 187/91 and 36/91, respectively [6].

In Fig. 1.7, we exhibit the cluster size distribution at p = pc for four different system

sizes on a double logarithmic scale. Since, the largest cluster is fractal at pc, the cut-off
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is seen to grow as Ldf . The second largest cluster also has the same fractal dimension

df and therefore, even if the largest cluster is excluded while calculating the cluster

size distribution, the cut-off still scales as Ldf .

1.3.4 Second Moment

The second moment M ′
2 of the cluster size distribution is defined as

M ′
2 = 1

Ld

[∑
i

s2
i − 〈s2

max〉
]
, (1.10)

where si is the size of the cluster i. Clearly, M ′
2 depends on the value of p and the size

of the system L. The function M ′
2(p, L) is maximum at a specific value of p = pm(L)

and decreases monotonically on both sides of this point. As L is increased, pm(L)

approaches pc in the limit L→∞. At p = pc, the second moment scales with L as

M ′
2(pc, L) ∼ Lγ/ν . (1.11)

The exponent γ can be expressed in terms of the exponents ν, df and τ as follows. Since

the cut-off of the cluster size distribution at p = pc grows with L as Ldf , the expression

of M ′
2(pc, L) can approximately be written using Eq. (1.10) as per the following form:

M ′
2(pc, L) ≈

∫ L
df

1
D(s)s2ds ≈ Ldf (3−τ). (1.12)

So from Eqs. (1.11) and (1.12) we get the scaling relation γ/ν = df (3− τ).

1.3.5 Shortest Path

An arbitrary pair of sites belonging to a cluster are interconnected and thus, they can be

reached by traversing a sequence of nearest neighbor distances. A particular sequence

constitutes a ‘path’ and the ‘path length’ corresponding to that path is defined by the

number of distinct nearest neighbor distances on the path. In general, a number of
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distinct paths of different path lengths exist between the pair of given sites. The path

with the smallest path length ` is called the shortest path. There may exist more than

one shortest paths connecting the two sites and therefore, it is not unique. The concept

of shortest path is essential in the context of efficient transportation of matter. For

example, the oil industry performs measurements of the shortest path between two

wells (one acts as the injector and another one is used for extraction) for the production

of oil in an economically viable way. Similarly, in communication systems, for efficient

flow of data packets through Internet requires the knowledge of the shortest path.

The average length 〈`(L)〉 of the shortest path between two sites belonging to the

spanning cluster, one in the top row and another in the bottom row of the system, is

found to scale with the lattice size L at the percolation threshold as

〈`(L)〉 = Ld` , (1.13)

where d` is the shortest path fractal dimension. Till now, its exact value even in two

dimensions is not known. The best numerically obtained value of d` in the literature is

1.13077(2) in two dimensions [44].

Further, several different pairs of sites with a certain fixed Euclidean distance

of separation can be found on the spanning cluster. Evidently, the shortest path

lengths between these pairs of sites are different. It is well-known in the literature that

the distribution of the shortest path lengths at the percolation threshold exhibits a

power-law with an exponent close to 2.14 [45, 46].

1.3.6 Backbone and Dangling Ends

Consider that there is an Ohmic resistor between every pair of neighboring occupied sites

at a given site occupation probability p > pc. So there always exists a spanning cluster

of resistors. Now a potential difference is applied between a pair of sites belonging

to the spanning cluster, one in the top and another in the bottom row of the lattice.
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The set of paths connecting these two sites only carry non-zero current and constitutes

the backbone of the percolation cluster. Each of the remaining parts of the spanning

cluster connects to the backbone through a single site and therefore, no current flows

through them. These parts are called the dangling ends. Right at pc, the mass (i.e.,

total number of sites) of the backbone Mb scales with the lattice size L as

Mb(L) ∼ Ldb , (1.14)

where db is the fractal dimension of the backbone and its best known value is db =

1.6434(2) [47, 48] for the ordinary percolation in two dimensions.

At pc the mass of the backbone is negligible compared to the mass of the largest

cluster. In other words, the masses of the dangling ends mainly contribute to the mass

of the largest cluster. This fact and the self-similarity of the largest cluster immediately

implies that the dangling ends are also fractal with the same fractal dimension df of

the largest cluster. It is well known that the probability distribution of the masses of

the dangling ends follows a power-law:

D(M) ∼M−(1+λ), (1.15)

where M is the mass of a given dangling end and the scaling theory predicts λ = db/df .

It has also been verified using numerical simulations in Ref. [49].

1.3.7 Percolation Critical Exponents

The critical exponents of percolation are not independent, they are related to one

another by scaling and hyperscaling relations. For example,

df = d− β/ν, (1.16)

γ/ν = df (3− τ), (1.17)
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σν = 1/df , (1.18)

τ = 1 + d/df , (1.19)

dν = γ + 2β, (1.20)

etc. Many such relations are given in Ref. [50]. In the above relations, the dimensionality

d is coupled with the critical exponents and thus, by changing d a different set of critical

exponents appear (below the mean-field limit). For a given dimensionality, although

the percolation thresholds are different for different lattice geometries, the critical

exponents are independent of the lattices and thus, universal. Furthermore, both the

site percolation and bond percolation are found to belong in the same universality class.

The values of the critical exponents that have been discussed in the above sections are

listed in the Table 1.1.

Table 1.1: Critical exponents of the ordinary percolation in two and three dimensions.
The exact values are taken from Ref.[6].

d 2 3
ν 4/3 0.87619(12) [51]
β 5/36 0.41809(15) [52]
df 91/48 2.52295(15) [52]
γ 43/18 1.805(20) [53]
τ 187/91 2.1890(2) [54]
σ 36/91 0.445(10) [55]
dl 1.13077(2) [44] 1.3756(6) [44]
db 1.6434(2) [47] 1.77(7) [56]

1.4 Variants of Percolation Models

Due to its simplicity in the description and plenty of applicability in a wide variety of

fields ranging from physics, biology to engineering, the literature on this topic is vast

and expectedly, a large number of variants of percolation models exist in the literature.

The generic feature of all these percolation models is the emergence of long-range
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Figure 1.8: Phase diagram of the site-bond percolation on a square lattice, where p
and q correspond to the site and bond occupation probabilities, respectively. The
data presented here are obtained from our numerical simulation using the lattice size
L = 1024. The critical curve on the p− q plane separates the percolating region (above)
from the non-percolating region (below).

connectivity from the short-range connectedness when the control variable is tuned to

the critical point. We briefly describe a few of them in the following.

1.4.1 Site-Bond Percolation

The site-bond percolation [57] can be viewed as a combination of both site and bond

percolation model. This model was introduced for theoretical understanding of the

experimentally observed results of polymer gelation. In a real experiment of polymer

gelation, solvent molecules are usually present along with the monomers and depending

on the experimental conditions (e.g., temperature) chemical bonds start to form only

between the pairs of monomers [5]. Certainly, the gelation is affected by the fraction

of volume in system occupied by the solvent molecules. The site-bond percolation is

regarded as the simplest model of gelation, which takes into consideration the presence

of solvent molecules in the system.

In this model, the sites and bonds of a regular lattice are occupied randomly and

independently with two different probabilities of occupation p and q, respectively. The
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occupied sites represent the monomers, whereas the vacant sites represent the solvent

molecules. Only the occupied bonds having two occupied sites at their opposite ends

represent the chemical bonds. Therefore, a sequence of occupied sites connected by

the occupied bonds forms a cluster that corresponds to a polymer chain. Depending

on the value of p and q, the global connectivity through the alternating occupied sites

and bonds is determined by the appearance of such a cluster spanning between two

opposite boundaries of the lattice. Clearly, for p = 1 and q = 1, the model reduces to

the ordinary bond percolation and site percolation, respectively. For any general value

of pc 6 p 6 1, there exists a critical density of bonds qc, where percolation transition

occurs. Therefore, a phase digram can be constructed in the p− q parameter space,

where a critical curve divides the entire p− q plane into two regions representing the

percolating and non-percolating phases (Fig. 1.8). The critical behavior at all points on

the phase boundary has been found to be same as that of the ordinary percolation [58].

1.4.2 AB Percolation

Spins in the antiferromagnetic materials align in a particular (regular) arrangement

such that the energy of the system is minimized. Specifically, in the ground state

anti-parallel alignment of neighboring spins are energetically favorable and thus, they

are assumed to be bonded. Motivated by this antiferromagnetism, Mai and Halley

introduced the AB percolation model [59] which is illustrated as follows. Initially, all

sites of a lattice are occupied with B atoms. Then, the sites are selected randomly

one by one and the B atoms at these sites are replaced by the A atoms [36]. At any

arbitrary intermediate stage, the fraction of A atoms is denoted by p. According to

this model, the bonds which have both A and B atoms at their two opposite ends are

declared as connected mimicking the case of antiferromagnetism and form AB clusters.

For a given value of p, the density of connected bonds is given by pb = 2p(1 − p),

which has its maximum at p = 1/2 and decreases monotonically on both sides of

this point. Moreover, pb is symmetric about this point. This behavior of pb should
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Figure 1.9: For AB percolation, (a) the variation of the order parameter Ω(p, L) with
p has been shown shown for the triangular lattice of sizes L=256 (black), 512 (red),
1024 (blue), and 2048 (green); (b) finite-size scaling plot of the same data. The best
data collapse corresponds to pc = 0.2155(6), 1/ν = 0.748(5), and β/ν = 0.103(2).

be reflected in the percolation properties of the system also. As p is increased from

zero, the average size of the largest cluster increases till p = 1/2 and then, its size

again decreases monotonically. Because of this, if the largest AB cluster establishes

a global connectivity at a specific value of p = pc, the connectivity is lost beyond the

point p = 1− pc. Therefore, for pc 6 p 6 1− pc, the system is percolating. However,

the existence of the global connectivity through the alternating A and B atoms and

therefore the existence of pc, crucially depends on the geometry of the underlying

lattice [60, 61]. For example, the spanning AB cluster does not appear on the square

lattice [61, 62], but it exists on the triangular lattice [63] and here pc ≈ 0.215 [59].

Although, it was first concluded that the universality class of AB percolation in two

dimensions is different from the ordinary percolation [59], later it has been argued that

it belongs to the same universality class as the ordinary percolation [64–66]. The data

obtained from our numerical simulations for the order parameter Ω(p, L) (defined in

Sec. 1.3.2) has been plotted against p in Fig. 1.9(a). The finite-size scaling of the same

data has been performed in Fig. 1.9(b) with the scaling exponents consistent (within

error bars) with the exponents of the ordinary percolation.
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1.4.3 Invasion Percolation

Perhaps, the most simple but appropriate model in the context of flow of two immiscible

fluids in porous media is the model of invasion percolation proposed by Wilkinson and

Willemsen [67]. Imagine a scenario where a porous medium is completely filled with oil

and water is injected into the medium at a very slow but constant rate. As a result,

the water front advances through the medium by displacing the oil. Clearly, water

and oil act as invading and defending fluids, respectively. The water front advances

slowly by following the path of least resistance offered by the oil contained in the pores

of different sizes on the oil-water interface. During this process a situation may arise

when a part of the defending fluid gets trapped in a region surrounded by the invading

fluid. Depending on the compressibility of the defending fluid the flow of invading fluid

into that region is either prohibited or permitted.

The original model of invasion percolation was studied on a regular lattice geometries

representing the porous media, where every site is assigned a number r by drawing its

value randomly from a uniform distribution in the range [0, 1]. Now, starting from an

initial configuration with all sites occupied by the defender, the invader starts growing

from a single site (in the simplest case) as follows. At each time step, the number

of invader increases by one by displacing the defender from the site having smallest

value of r on the interface, while the displaced defender leaves the system [67, 68]. To

describe the model more elaborately, let us consider that initially, i.e., at time t = 0, a

single invader resides at the site (i, j) on a square lattice. At time t = 1, the numbers

associated with all four nearest neighbors of (i, j) are checked and the site having the

smallest number is displaced by the invader. Thus, a cluster of invader of size s = 2 is

formed. In a similar way, at time t = 2, the site with the smallest number is determined

from the six perimeter sites of the cluster and then, it is occupied by the invader. This

way a single cluster of invader grows with time by following the local properties of

the medium, and after a particular instant of time the cluster percolates i.e., it spans

across the lattice. At this stage, the density of occupied sites by the invader defines the
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percolation threshold pc.

It is important to note that at an arbitrary intermediate time step when the number

r = r0 determines the next site to be invaded, that does not imply that all the sites

with r < r0 has already been occupied by the invader. In the subsequent steps, as

the interface advances, more and more new sites become available at the interface and

consequently, a set of numbers smaller than r0 may appear.

The properties of the cluster of invader at the percolation point pc significantly

depends on the nature of the displacing fluid as described here. For infinitely com-

pressible defender, one can ignore the trapping mechanism and in this limit the fractal

dimension df of the cluster at pc has been found to be same as the ordinary percolation,

i.e., df ≈ 1.89. A different value of df ≈ 1.82 has been reported in two dimensions

by considering the trapping where the defender prohibits the flow of invader into the

trapped region [67]. Furthermore, the value of df ≈ 1.82 was estimated in an experiment

where the oil was displaced by the air in a two dimensional network [69].

1.4.4 Continuum Percolation

Instead of lattice geometries, Percolation has also been studied on continuum space.

The geological porous media such as fractured rocks, soil, etc., commonly do not

possess ordered pores structure as lattice geometries. In general, the pores are found

distributed over space randomly and oriented in random directions. Thus, a pore may

directly connect many other pores whose number vary from place to place. To study

the phenomenon of percolation in such systems the relevant model is the continuum

percolation [18, 30]. In a simple minded description of the continuum percolation model,

one may consider the following scenario. Lily pads floating at random positions on the

water surface of a pond with a certain fixed value for their radii [18, 35]. Here, one

finds the minimal density of Lilies required for an ant to cross the pond by walking

on the overlapping Lilies. Another real world example where this percolation model

is applicable is the Mobile ad hoc network (MANET) [35, 70]. Each mobile device
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Figure 1.10: Representation of a network with six nodes and eight links.

in a MANET has a fixed range of transmission that is capable of receiving as well as

transmitting signals and located at a random position. The main question one tries

to address here is how the global connectivity can be established in such a network.

Depending on the value of the range there exists a critical density of phones or Lily

pads where the long-range correlation first sets in. It is well-known that in continuum

percolation the nature of the phase transition is continuous and the model belongs to

the universality class of ordinary percolation [30, 71].

1.4.5 Percolation on Networks

Many real-world systems do not have regular structures as the lattice geometries, for

examples, the World Wide Web [72, 73], food webs [74], electrical power grids [75], etc.,

called networks. A network consists of a set of nodes and links connecting the nodes

(Fig. 1.10). Sometimes the links are also referred as edges. In general, a node may be

connected with many other nodes via links whose number may vary from node to node.

The number k of links associated with a given node is called its degree. Essentially, a

network is characterized by its degree distribution D(k), that a randomly selected node

has the degree k. A wide variety of real-world networks (mentioned above) exhibit a

power-law degree distribution [76]:

D(k) ∼ k−λ, (1.21)
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where λ is the degree distribution exponent. Such networks are called scale-free

networks.

Probably, the most simplest model of a growing network is the random graph model

introduced by Erdös and Rényi (ER) [77], where starting from a set of isolated nodes

N , the links are added sequentially between a pair of randomly selected nodes. At

any arbitrary stage, the number of links per nodes in the network is represented by

p. As p is increased, the size of the cluster of nodes interconnected through the links

increases, and at a critical value of p = pc, a continuous transition occurs signaled by

the emergence of a giant cluster in the network. It is to be noted that for sufficiently

large N the degree distribution of the network is Poissonian [76].

Percolation transition has also been studied on the scale-free networks. Expectedly,

a strong dependence of λ [Eq. (1.21)] on the percolation threshold of the network is

observed [78–81]. The percolation threshold assumes a finite value for 3 < λ < 4,

whereas for 2 < λ < 3 such a percolation transition is absent [79]. More interestingly,

different sets of non-trivial critical exponents are found for different regimes of λ [79].

1.4.6 Explosive Percolation

Over several decades after its introduction in 1957, many different variants of percolation

model have been introduced. Continuity in the variation of the order parameter curve

around the transition point is the basic characteristic of all these models. Therefore,

the percolation transition is believed to be one of the most robust continuous transition.

However, recently, Achlioptas, D′Souza, and Spencer suggested that a discontinuous

transition may be possible in a model of percolation called explosive percolation

(EP) [82]. Introducing a competition between a pair of randomly selected vacant edges

and occupying the optimal one for the formation of a network leads to a sudden change

in the value of the order parameter. The detailed description of the model has been

given in the following paragraph.

A slight modification in the formation process of the Erdös-Rényi (ER) network
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model describes the original model of EP. One starts with N isolated nodes and then

links between pairs of nodes are added sequentially by following an additional pre-

defined rule in the ER model [82]. The formation of a network in this manner is referred

as Achlioptas process. Specifically, in each step, instead of selecting one edge as in the

ER model, a pair of vacant edges is selected randomly and independently to each other.

However, only one of them, which produces a smaller size of cluster, is finally added

to the growing network and the other one is discarded. This local modification in the

growth procedure of ER significantly changes the percolation properties of the network.

The competition between the edges can be introduced using the product rule [82]

as mentioned here. Let si, sj and sk, sl are the sizes of the cluster at the ends of the

selected two edges between the nodes (i, j) and (k, l), respectively. Now, according to

the product rule the link between (i, j) is added to the network if sisj < sksl, otherwise

(k, l) is added. At any arbitrary stage, the number of existing links per nodes is denoted

by p. Clearly, by following this mechanism the clusters of small sizes grow preferentially

than the large size clusters. Moreover, this suppresses the growth of the largest cluster

and as a consequence, the percolation transition is retarded. For p just below the

transition point pc, moderately large-size clusters are abundant in EP [83], unlike the

case of ordinary percolation where the largest cluster is significantly bigger in size than

that of the second largest cluster. Coexistence of these similar size clusters raises the

question about the existence of a unique largest cluster [84]. Addition of a single link

merges such large-size clusters and a giant cluster is formed, leading to an abrupt rise

in the order parameter curve at the percolation threshold. This led them to claim that

EP model exhibits discontinuous transition [82]. The value of pc has been found to be

0.888449(2) [85] compared to 1/2 for ER Random graph.

Expectedly, this triggered a burst of activity and attracted a great deal of interest

in the physics communities in the field of percolation. Subsequently, a series of research

papers appeared attempting to explain the nature of transitions in the models of explo-

sive percolation introducing various rules including its generalization [86–91]. However,
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Chapter 1 1.4. Variants of Percolation Models

ambiguity in the reported results for the order of transition in EP demanded more

careful research. Costa et al. first raised the controversy about the order of transition

by claiming that a model where small-size clusters grow more preferentially than in

the original EP undergoes a continuous transition at the percolation threshold [92]. In

this model, node i is selected between a pair of randomly chosen nodes (i, j), if si < sj ,

otherwise j is selected. Similarly, another node is selected from a different pair of nodes

(k, l). Finally, a link is placed between these selected nodes. Accordingly, the network

grows and the percolation transition occurs at pc = 0.923207508(2). This implies that

the transition in the original EP must be continuous.

Subsequently, evidences from extensive numerical simulations also established that

the original EP model although shows a very sharp change in the order parameter

for finite size systems and therefore appears like discontinuous transition, it indeed

exhibits continuous transition in the asymptotic limit of very large system sizes [83, 85].

Grassberger et al. observed a bimodal distribution for the order parameter at the

percolation threshold for finite size system. However, the distance between its peaks

is observed to decrease as a power-law with system size N leading to a continuous

transition in the limit N → ∞ [85]. Later Riordan and Warnke rigorously proved

that EP under Achlioptas processes exhibit continuous transition in the asymptotic

limit [93, 94]. They argued that depending on the rule for selecting a single link from a

finite number of randomly chosen vacant edges and its addition in the network always

leads to a continuous transition. However, a discontinuous transition is possible when

it is selected from the entire set of vacant edges [90, 93].

Further, EP model has also been studied on scale-free networks [87, 95, 96] and real-

world networks [97]. The EP transition under Achlioptas process with the product rule

on different lattice geometries is found to have unusual finite-size scaling behavior [85, 98].

However, no concrete claims have been made for its order of transition. Only recently,

two models have been proposed on lattice, namely, the ‘Gaussian model’ [99, 100]

and the ‘spanning-cluster-avoiding model’ [101], and shown that the models undergo
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Chapter 1 1.4. Variants of Percolation Models

discontinuous percolation transitions.

1.4.7 Directed Percolation

In the case of bond percolation, the spreading of a liquid can take place isotropically in

all possible directions through a set of occupied bonds representing channels. A special

variant of this model is the situation where a preferred direction is considered for this

propagation. Such a scenario resembles the flow of the liquid through a porous medium

under gravity. This particular model is known as the directed percolation (DP) and

was introduced in 1957 by Broadbent and Hammersley [1].

The model of DP can be described simply on an oriented square lattice where a

preferred direction, say the downward direction, is assigned with every occupied lattice

bond between a pair of nearest neighbor sites. The bonds act as valves and consequently,

a bond restricts the flow along the direction opposite to the direction associated with

it [102, 103]. More explicitly, on this lattice geometry a liquid can spread from a site

to its only two nearest neighbors situated at the down-left and down-right directions.

Evidently, at any arbitrary configuration of occupied bonds, the cluster of sites that

can be reachable from a given site by following the directions in DP is a subset of the

cluster of sites corresponding to the ordinary percolation.

Accordingly, in DP the clusters grow in size as the density of connected bonds is

increased and at a critical value of the bond density long-range correlations first set

in. The system undergoes a continuous transition at this point. Due to the imposed

direction in the DP model, the long-range correlations that appear at the transition

point are not invariant under rotation. As a consequence, two distinctly different

correlation length exponents are obtained in two mutually perpendicular directions.

Expectedly, the DP model exhibits different universal critical behavior compared to

the ordinary percolation [103].

It has been observed that a wide variety of apparently unrelated non-equilibrium

systems exhibit the universal critical behavior of DP. Probably, the most common
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Chapter 1 1.5. Random Sequential Adsorption

example of this type of non-equilibrium phase transition is the active-absorbing phase

transition, in which the system remains in a completely frozen state with no activity at

all till a critical value of the control variable is reached [103, 104]. Because of this, the

DP is now regarded as the fundamental model for non-equilibrium phase transitions.

1.5 Random Sequential Adsorption

Adsorption is a surface phenomenon which describes the attachment of objects in general

onto a surface. The phenomenon of adsorption has applicability in many disciplines of

science ranging from physics, biology to engineering including, wide variety of industrial

applications. For example, adsorption plays a key role in the process of filtration

where activated charcoals are usually used to absorb poisonous gas particles and thus,

allowing the purified air to pass through [105]. Adsorption of micron and submicron

size colloidal particles on surfaces is another area of great practical importance, as it

is the underlying mechanism of the thin films formation for a variety of technological

devices, such as photonic crystals, quantum dots, etc., which are generally used for

surface coatings and encapsulations [105–113].

Often the adsorption occurs irreversibly and subject to a certain constraint, for

instance, adsorption of proteins on the biological membranes [105]. The model of

random sequential adsorption (RSA) is known to be the basic model in the field of

statistical physics which provides useful theoretical insights about the kinetics of ad-

sorption involved with such irreversible adsorption processes and has been studied

quite intensively over the last several decades [114–116]. It was Flory who first intro-

duced a one-dimensional version of RSA to study the interaction among the pendant

groups along a linear polymer chain [117]. Subsequently, this model was popularized

by Rényi [118] and Feder [119] in the statistical physics community, when it had been

realized that the model has ingredients to exhibit the universal features of critical

phenomena.
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In RSA, the objects are adsorbed sequentially and irreversibly at randomly selected

vacant positions on a surface, subject to a constraint that they can not overlap with

any previously adsorbed objects. Such interactions among the objects are termed as the

excluded volume interaction. In the simplest case, these objects are considered to be

inherently immobile, i.e., they can not move out from their position of adsorption [105,

106, 113]. The kinetics of adsorption continues till a jamming state is reached, where

no more objects can be adsorbed. Essentially, the structure of the jamming state is

very non-trivial and this attracted considerable attention to the scientific community

to study many aspects of the model, e.g., the role of the object shape, object size,

mechanisms of adsorption, etc. [105, 113, 120–127]. In Chapter 5 of this thesis we

introduce a RSA model and describe in greater detail how the properties of the structure

depend on the mechanism of relaxation.

1.6 Plan of the Thesis

In the previous sections we have briefly reviewed the literature of percolation, discussed

a few variants of percolation models and described percolation as a paradigm of random

disordered systems. Furthermore, we have described percolation as a fundamental

problem of critical phenomena. In the next four Chapters, we present our study on

how the percolation properties of a system are affected by different sources of disorder

which influences the small-scale connectivity. In Chapter 2, we study the percolation

transitions using a collection of disks with non-uniform radii. We further extend this

study by considering an explicit time variation of the disks radii in Chapter 3. In

Chapter 4, we generalize the well-known model of AB percolation and examine the

percolation properties of the system. In Chapter 5, we investigate the role of relaxation

dynamics in a model of random sequential adsorption on the percolation and jamming

transitions.
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Chapter 2

Percolation Model with an

Additional Source of Disorder

2.1 Introduction

In the previous Chapter, we have already described that the percolation transition is

signaled by the emergence of long-range correlation and therefore, the system exhibits

large-scale connectivity beyond the transition point. In this Chapter 1, we introduce a

variant of the percolation model with two different sources of disorder and investigate

how these disorders affect the percolation properties of the system. This model may be

applicable in the context of wireless sensor networks.

The wireless sensor networks (WSNs) [26, 128] consist of a collection of sensor

nodes which are usually deployed in a manner that resembles a regular topology in the

form of a grid. The WSNs are commonly used for monitoring various environmental

conditions, such as temperature, pressure, humidity, etc. Each sensor node in a WSN

may connect to several other nodes and forwards the collected data when the wireless

transmission ranges of these sensor nodes overlap. The storage capacities of the sensor

nodes are finite and hence it is important to ensure that each sensor can send the
1The work reported here is based on the paper “Percolation model with an additional source of

disorder”, Sumanta Kundu, and S. S. Manna, Phys. Rev. E 93, 062133 (2016).
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Chapter 2 2.1. Introduction

accumulated data to a base station, otherwise the data packets would be lost. This is

often achieved using a multihop radio link connecting the node and the base station

through a set of intermediate nodes. In other words, a node can forward the data

packets to a base station only when both of them become part of a percolating cluster

through the overlapping ranges of transmission of the intermediate nodes.

The transmission range of each sensor node is approximately circular. However,

these circular ranges are not uniform in reality. They are affected by temperature

variations in the air, obstruction due to the solid objects, and even humidity differences

in the environment. Therefore, they are spatially heterogeneous, i.e., they differ from

one place to another. So the question is how such spatial heterogeneities in the ranges

of transmission affect in establishing the global connectivity in the network. In order to

investigate that, we introduce a percolation model using a collection of circular disks

with uniformly distributed radii positioned randomly at the sites of a regular lattice.

More precisely, by drawing a random value R for the radius of a disk from a uniform

distribution p(R), the disk is placed at a randomly selected position centered at the site

of a square lattice. Thus the system is spatially heterogeneous mimicking the varying

ranges of transmission of the sensor nodes, as these ranges may be compared with the

radii of the disks. A bond between a pair of disks is defined to be connected if the

radii R1 and R2 of the disks at the two ends of the bond satisfy certain predefined rule.

Most generally, one divides the whole R1-R2 plane into two regions by a closed curve;

any point within only one region corresponds to a connected bond. Clearly, there is

an additional source of disorder in this model apart from the disorder originated from

the random occupation of lattice sites, as in the case of site percolation. Here, based

on our publication [35], we have studied the percolation properties of the system by

tuning the parameters of the model.

The organization of the Chapter is as follows. We start by describing our model

and the method of analysis in Sec. 2.2. We present the percolation properties of the

system using three different rules for a bond to be defined as connected, namely, sum
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Figure 2.1: A sketch of the two parameters (S,W ) uniform rectangular distribution
p(R) of the radii R of circular disks. The center of the distribution has been shifted at
R = 1/2 + S and it has the width W on both sides of this point.

rule, product rule, and circular rule in Secs. 2.3, 2.4 and Sec. 2.5, respectively. The

variation of the bond density with the density of occupied sites has been described in

Sec. 2.6. Percolation transition on a fully occupied lattice using uniformly distributed

radii of the disks has been described in Sec. 2.7. Finally, we summarize in Sec. 2.8.

2.2 Model and Algorithm

The sites of an initially empty square lattice of size L × L with periodic boundary

conditions are occupied randomly using circular disks of random radii values R. The

values of the radii are drawn from a uniform rectangular distribution p(R) of half width

W and the center at R = 1/2 + S, where S measures the amount of shift of the center

of rectangular distribution from R = 1/2 (Fig. 2.1). For the simulation, at every step

an arbitrary vacant site is randomly selected and then, the center of a disk is placed

at this particular site by drawing a random value from the probability distribution

p(R) for its radius. Precisely, a random number r ∈ {0, 1} from a uniform distribution

is assigned at each lattice site to calculate R = 1/2 + S + (2r − 1)W . Clearly, the

random occupation of lattice sites is the first source of randomness and the second
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Chapter 2 2.2. Model and Algorithm

source of randomness is introduced through the radii of the disks. In this prescription,

a bond is defined to be connected if and only if the radii R1 and R2 of disks situated at

the two ends of the bond satisfy a certain predefined rule; otherwise it is declared as

unconnected. In a general formulation, such a rule is defined on the R1-R2 plane by

dividing the whole plane into two different regions using an arbitrary closed curve. Any

point within one region represents a connected bond, otherwise it is an unconnected one.

Clearly, the density of connected bonds changes when the values of S and W are tuned

and the global connectivity is determined only through the set of connected bonds.

Here, based on our publication [35], we present the global connectivity properties of

the system using three different rules for defining a bond to be connected.

To generate a single percolation configuration α with site occupation probability p,

we start from an empty square lattice of size L and then drop pL2 disks with random

radii values, one by one, onto the randomly selected vacant sites. All four neighboring

bonds of every occupied site are then tested for their possible status: connected or

unconnected. Unlike the site percolation, when the four neighboring sites of a given

occupied site are all occupied, the number of connected bonds associated with the center

site may vary from 0 to 4. A set of occupied sites interlinked by these connected bonds

forms a cluster. For any value of p, there exists at least one largest cluster whose size is

denoted by smax(p, L) and the order parameter is defined by Ω(p, L) = 〈smax(p, L)〉/L2

as described in Sec. 1.3.2.

The percolation threshold pc of the system has been determined using the numerical

method described in Sec. 1.2.1 in Chapter 1. The value of p, at which the largest cluster

merges with the maximal of the second largest cluster and hence executes the maximal

jump ∆msmax(p, L) in size [35, 36, 43], is recognized as the percolation threshold pαc for

the particular configuration α. An average over many such independent configurations

is considered as the percolation threshold pc(L) = 〈pαc 〉 for the system size L. We repeat

the entire calculations for different values of L and estimate the pc(L) values. Finally,

the asymptotic value of pc in the limit L → ∞ is obtained by extrapolating pc(L)
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Figure 2.2: On the R1-R2 plane, for a specific set of values of W = 1/4 and S, the
regions corresponding to the connected bonds (grey) and unconnected bonds (white)
are indicated. For the sum rule (a) S = 0 and (b) S = 1/8 and for the product rule (c)
S = 0 and (d) S = 1/8.

against L−1/ν as given in Eq. (1.2), where the correlation length exponent ν = 4/3 in

two dimensions.

2.3 Sum Rule

A bond is declared as connected if and only if,

R1 +R2 > 1. (2.1)

For a given pair of S and W , the points in the R1-R2 plane representing the occupied

and vacant bonds, lie within a square box (Fig. 2.2). In Figs. 2.2(a) and (b) we exhibit
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Chapter 2 2.3. Sum Rule

Figure 2.3: A typical percolation configuration of 501 circular disks has been shown
on a square lattice of size L = 24 (with periodic boundary conditions) using the sum
rule for W = 0.15, S = 0 and p ≈ 0.87. The largest and the second largest clusters
are of sizes 208 (red) and 90 (green), respectively. It exhibits a very specific situation
where these two clusters merge due to the occupation of the blue disk and the maximal
jump in the size of the largest cluster takes place. Disks at all other occupied sites are
painted in cyan.

two specific cases with S = 0 and 1/8, respectively, where W=1/4. We show a typical

picture of a percolating configuration for the sum rule in Fig. 2.3.

According to this rule, for S = 0 and W = 0, the bond between any pair of

neighboring occupied sites is connected. Therefore, pc(S = 0,W = 0) = pc(sq), where

pc(sq) is the site percolation threshold on square lattice. When S = 0 and W > 0,

in spite of the fact that only half of the disks have radii larger than 1/2, a global

connectivity can still be achieved. The small size disks certainly contribute to the density

of occupied sites but may or may not take part in the bond density. Consequently, the

growth of the largest cluster is delayed and it takes the higher density of occupied sites

to establish the global connectivity. This implies that pc(S = 0,W > 0) > pc(sq).

The asymptotic value of the percolation threshold has been estimated using the

method described before. Plotting pc(L) against L−1/ν with different trial values
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Figure 2.4: For the sum rule, the variation of the order parameter Ω(p, L) against the
site occupation probability p has been plotted for L = 512 with red for S = 0.03 and
W = 0.04, 0.045, 0.05; blue for S = 0.02 and W = 0.04, 0.05, 0.06; magenta for S = 0.01
and W = 0.04, 0.2/3, 0.15 and black for S = 0 and W = 0.04; the curves are arranged
from left to right.

of ν on a lin-lin scale, the best fit of the data by a straight line is obtained using

ν = 1/0.7502 ≈ 1.333(5). Extrapolation of the fitted line in the limit L → ∞ yields

pc(S = 0,W > 0) ≈ 0.9191(2). As the region corresponding to the connected bonds

equals to the unconnected bonds (Fig. 2.2), the probability of finding a connected

bond between two neighboring occupied sites is 1/2 for all values of W > 0 and

consequently, pc(S = 0,W > 0) is independent of W . Further, the average size of

the largest cluster scaled by L2 has been found to decay like L−0.105 and this gives

an estimate of df = 1.895(5) compared to the exact value of df = 91/48 [6]. We also

observed that the configuration averaged value of the maximal jump in the size of the

largest cluster 〈∆msmax(pc, L)〉/L2 varies as L−0.104. Equating the power to df − 2 one

gets df = 1.896(5). This clearly indicates that the largest cluster and the second largest

cluster are fractal objects with the same fractal dimension df .

For different (S,W ) pairs, the variation of the order parameter Ω(p, L) against the

site occupation probability p has been exhibited in Fig. 2.4. Because of the small size

disks, the value of Ω(p, L) converges in the limit of p→ 1 to a maximum value which

is well below unity and depends on the precise values of the parameters S and W .
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Figure 2.5: For the Sum Rule, the scaling plot of pc(S,W )− pc(S) against W/S− 1 has
been shown for S = 0.1 (green), 0.01 (magenta) and 0.001 (black). The values of pc(S)
required to make the curves straight in the limit W/S → 1 are 0.5927675, 0.5927684,
and 0.5927662, respectively which are very close to pc(sq). The slopes of the linear
portions are 1.96, 1.93 and 1.94 respectively, giving ζS = 1.95(5).

For S = 0, the curve is independent of W . However, for a fixed non-zero value of S,

the sharp rise in the order parameter curve shifts towards the higher values of p with

increasing W , whereas for a fixed value of W , the curve shifts towards the smaller

values of p with increasing the value of S.

For a given non-zero value of W , the region corresponding to the connected bonds

[Fig. 2.2(a)] increases as S > 0 is increased and thus, the percolation threshold pc(S,W )

decreases. Evidently, pc(S,W ) = pc(sq) for S > W . For 0 < S < W , the asymptotic

values of pc(S,W ) in the limit of L → ∞ are calculated as before using Eq. (1.2).

It appears that pc(S,W ) for different values of S and W depends only on the ratio

W/S. To investigate how the values of pc(S,W ) approach the value pc(sq) in the limit

W/S → 1, we performed a scaling analysis. Precisely, we plot the pc(S,W ) − pc(S)

against the scaled variable W/S − 1 for three different values of S and for each S many

W values and then tune the values of pc(S) to obtain a good data collapse as shown

in Fig. 2.5. The curves for different S fit to a very nice straight line as W/S − 1→ 0

indicating a scaling form

pc(S,W )− pc(S) ∼ (W/S − 1)ζS , (2.2)
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Figure 2.6: For the Sum Rule and for S < 0, the difference pc(Sc,W )− pc(S,W ) has
been plotted against S − Sc on a log-log scale for W = 1/4 with pc(Sc,W ) = 1 at
Sc = −0.0201(5). The resulting plot gives a straight line with slope ηS = 1.02(3).

where we estimated ζS = 1.95(5). Expectedly, we find that the best tuned values of

pc(S) are consistent with pc(sq).

On the other hand, when S takes negative values and its absolute value is increased,

the area in Fig. 2.2(a) representing the unconnected bonds increases, the connected

are decreases and therefore, the percolation threshold increases. Clearly, for a given

value of W there exists a specific threshold value of S = Sc when the percolation

threshold reaches unity, i.e., pc(Sc,W ) = 1. For S < Sc, the density of connected

bonds is not sufficient to establish the global connectivity. Numerically, we estimated

Sc = −0.0201(5) for W = 1/4. It has been observed that the percolation threshold

approaches unity as

pc(Sc,W )− pc(S,W ) ∼ (S − Sc)ηS , (2.3)

with ηS = 1.02(3) (Fig. 2.6). For other W values Sc(W ) varies, but Sc(W )/W remains

constant.
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Figure 2.7: For the product rule and S = 0, the difference pc(S,W ) − 0.9191 of the
percolation threshold has been plotted against the width parameter W using a log-log
scale. The slope of the fitted straight line has been measured as 0.98(5).

2.4 Product Rule

A bond between a pair of neighboring disks is said to be connected only when the

following condition is satisfied:

R1R2 > 1/4. (2.4)

The regions representing the connected and unconnected bonds determined by the

product rule are shown in Figs. 2.2(c) and (d) for S = 0 and 1/8, respectively, using

W = 1/4.

It can be seen from the Fig. 2.2(c) that for S = 0, the probability of finding a

connected bond decreases with increasing the value of W . Consequently, unlike the

case of sum rule, the percolation threshold pc(S = 0,W > 0) increases with W . In the

limit W → 0, the percolation threshold pc(S = 0,W > 0) approaches a value 0.9191(2)

(Fig. 2.7). This is because, the line R1 +R2 = 1 is the equation of the tangent to the

curve R1R2 = 1/4 at W = 0.

For a general value of S > 0, the order parameter Ω(p, L) plots are quite similar to

those of the sum rule, but for same (S,W ) pairs the pc(L) values are slightly larger.

For S > 0, we find that a relation like in Eq. (2.2) is valid here as well. A scaling

plot of pc(S,W )− pc(S) against W/S − 1 gives a very nice data collapse (not shown)
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Figure 2.8: A circular region with radius ∆ on the R1-R2 plane for S = 0 and W = 1/2.
A point (R1, R2) representing the radii of the disks at the opposite ends of a bond,
corresponds to a connected bond if the point lies inside the circle.

and we find ζP ≈ 1.93(10). Further, shifting the value of S to the negative values, the

percolation threshold increases and finally reaches unity at a specific value of S = Sc,

i.e., pc(Sc,W ) = 1. We obtained Sc = −0.0117(5) for W = 1/4. Similar to Eq. (2.3),

the approach to this limit is again characterized by a power-law with exponent ηP ≈ 1.

2.5 Circular Rule

Here a circular region, centered around the point (1/2, 1/2) of radius ∆ in the R1-R2

plane, is selected (Fig. 2.8). The radii R of the disks are again distributed by p(R) but

only S = 0 and W = 1/2 are used. The region inside the circle represents the connected

bonds whereas, the outside region represents the unconnected bonds. Therefore, the

condition for a bond to be declared as connected is

(R1 − 1/2)2 + (R2 − 1/2)2 6 ∆2. (2.5)

Evidently, the percolation threshold pc(∆, L) depends on the value of ∆. It has been

observed that if the size of the circular region is too small, the size of the largest cluster

becomes minuscule even when the site occupation probability p = 1. As the value of ∆

40



Chapter 2 2.5. Circular Rule

10
-3

10
-2

∆ − ∆
c

10
-3

10
-2

10
-1

p
c
(∆

c
) 

- 
p

c
(∆

)

10
-3

10
-2

10
-1

∆
L
 - ∆

10
-6

10
-4

10
-2

p
c
(∆

) 
- 

p
c
(∆

L
)

(a) (b)

Figure 2.9: For the circular rule, (a) the differences of the percolation thresholds pc(∆)
for different values of ∆ from pc(∆c) = 1 at ∆c = 0.3488(5) has been plotted on a log-log
scale. The slope of the straight line is ηC = 0.96(5). (b) The differences pc(∆)− pc(∆L)
has been plotted against ∆L −∆ using ∆L = 1/

√
2 and pc(∆L) = 0.59275371 for the

best fit. Clearly, pc(∆L) is very close to pc(sq). The fitted straight line has a slope
ζC = 1.96(5).

is increased, more and more bonds appear in the system and eventually they contribute

to the global. Consequently, there exists a threshold value of ∆ = ∆c such that a

percolation transition can occur only when ∆ > ∆c. Clearly, the percolation threshold

at ∆c is pc(∆c) = 1. As before, we observe that pc(∆c)− pc(∆) varies as (∆−∆c)ηC .

The least-squares fit of the numerical data yields ∆c = 0.3488(5) and ηC = 0.96(5)

[Fig. 2.9(a)]. Further, with increasing the value of ∆ monotonically, the region of

unconnected bonds continues to shrink and as a consequence, the percolation threshold

pc(∆) decreases. Finally, pc(∆) approaches its limiting value pc(sq) at ∆ = ∆L = 1/
√

2

when all points in the R1-R2 plane correspond to the connected bonds. We find that

in the limit ∆ → ∆L, the percolation threshold approaches pc(sq) in the same way

as in the case of sum rule and product rule. Precisely, our numerical data suggests

that pc(∆)− pc(sq) ∼ (∆L −∆)ζC with ζC = 1.95(5). Figure 2.9(b) demonstrates this

clearly.
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2.6 Variation of Site and Bond Densities

In the site percolation, the bond density grows with the site density as q(p) = p2. In

comparison, in our case, for any value of W > 0 this form is modulated by a function

as q(p) = H(S,W )p2. For the sum rule,

H(S,W ) =


1/2 + S/W − S2/(2W 2) for S > 0,

1/2− S/W + S2/(2W 2) for S 6 0.
(2.6)

For the product rule, there exists a threshold value SW , such that

4W 2H(S,W ) =


(S +W )2 + (S +W )− ln(1 + 2S + 2W )/2 for S 6 SW ,

4W 2 − (S −W )2 − (S −W ) + ln(1 + 2S − 2W )/2 for S > SW ,

(2.7)

where SW = [(1 + 4W 2)1/2 − 1]/2. For the circular rule, the expression of q(p) is very

straightforward and is given by

q(p) = π∆2p2. (2.8)

Our numerically estimated values of q(p) are in close agreement with these expressions.

2.6.1 Comparison with Site-Bond Percolation

Here, we compare our model with the site-bond percolation [57, 58], where lattice sites

and bonds both are occupied randomly and independently. In this model, the global

connectivity is determined through a sequence of alternating occupied sites and bonds,

as described in Sec. 1.4.1. In comparison, in our model when two neighboring sites

are occupied, the status of the bond between them either connected or unconnected

is immediately determined, subject to the fulfillment of certain condition. Hence our

model is somewhat a correlated bond percolation problem, where local correlations are
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Figure 2.10: Critical values of the site pc and the bond qc occupation probabilities are
plotted for the site-bond percolation [58] (black), sum rule (red), product rule (blue),
and the circular rule (green). The solid lines are the best-fit forms given in Eq. (2.9).

present.

To show the difference between these two models with an enhanced clarity, let us

consider a situation when the bond occupation probability is q = 1/2. For S = 0 and

W > 0, our model simply gives q = 1/2, where the percolation threshold is found to be

pc ≈ 0.9191. Clearly, this value is completely different from the site-bond percolation

on square lattice, where pc = 1 when q is set at 1/2 [58].

Similar to the site-bond percolation, we construct a phase diagram as shown in Fig.

2.10. A critical curve in this phase diagram divides the entire phase space into two

regions, namely, the percolating and the non-percolating regions. Therefore, every point

on the phase boundary between the two regions signifies a critical point, represented

by [pc, qc(pc)]. The data for the site-bond percolation have been collected from [58].

For comparison, similar phase boundaries for our model using the sum, product and

the circular rules have also been shown in the same plot. In general, all four phase

boundaries are distinctly different, but they meet only at the point [pc(sq),1].

For the site-bond percolation, the functional form of the critical curve is qc(pc) =

B/(A+ pc) [58]. In the phase diagram, the black solid line represents this curve. For
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our model, we have observed that a modified functional form

qc(pc) = B/(A+ pθc) (2.9)

fits the data very well. The best fit corresponds to θ = 2.41, 2.70, and 2.81 for the sum,

product and circular rules, respectively. For this analysis we have used W = 1/4 for

the sum and product rules.

2.7 Percolation on a Fully Occupied Lattice

A very interesting special case of our model is the situation when all sites of the square

lattice are occupied (p = 1) by disks of uniformly distributed radii R ∈ {0, R0}. This

is the only source of disorder present here. A related model in continuum percolation

considers disks of randomly selected radii [129, 130]. In this version of the model, the

parameter R0 acts as a control variable similar to the site occupation probability p.

Imposing periodic boundary condition along the horizontal direction and the open

boundary condition along vertical direction, the set of connected bonds are determined

by the sum rule. Clearly, for any value of R0 < 1/2, the density of connected bonds is

strictly zero. When R0 is continuously increased, more and more bonds get connected.

Consequently, the size of the largest cluster of sites interlinked by the connected bonds

also increases and for a critical value of R0 = R0c, the largest cluster connects two

opposite sides of the lattice through a spanning path across the system. Therefore, the

system exhibits global connectivity only for R0 > R0c.

2.7.1 Spanning Probability and Order Parameter

The spanning probability Π(R0, L) is defined as the probability that an arbitrary

percolation configuration has a cluster spanning between the top and the bottom

boundaries of the lattice. In Fig. 2.11(a), we plot Π(R0, L) against R0 for three different

44



Chapter 2 2.7. Percolation on a Fully Occupied Lattice

0.90 0.92 0.94 0.96
R

0

0.0

0.2

0.4

0.6

0.8

1.0

Π
(R

0
,L

)

-3 -2 -1 0 1 2 3
(R

0
-R

0c
)L

1/ν

0.0

0.2

0.4

0.6

0.8

1.0

Π
(R

0
,L

)

(a) (b)

Figure 2.11: (a) Plot of the spanning probability Π(R0, L) against R0 for the system
sizes L = 256 (black), 512 (red), and 1024 (blue). (b) Finite-size scaling of the same
data in (a) with R0c = 0.925, 1/ν = 0.75 exhibits an excellent data collapse.

system sizes which meet at approximately same value of R0 = R0c ≈ 0.925(5). To

estimate precisely the value of percolation threshold R0c, we first calculate R0c(L)

for individual system sizes using Π[R0c(L), L] = 1/2 and then, the R0c(L) values are

extrapolated in the limit L→∞ using an equation similar to Eq. (1.2) with ν = 4/3.

This gives an estimate of R0c = 0.925(5). A finite-size scaling analysis of Π(R0, L) has

been done in Fig. 2.11(b). Plotting Π(R0, L) against the scaled variable (R0−R0c)L1/ν

with 1/ν = 0.75, we obtain an excellent data collapse for all three system sizes [Fig.

2.11(b)], indicating a finite-size scaling form

Π(R0, L) ∼ F
[
(R0 −R0c)L1/ν

]
. (2.10)

In Fig. 2.12(a), we have plotted the order parameter Ω(R0, L) = 〈smax(R0, L)〉 against

R0. A similar finite-size scaling analysis has been performed for Ω(R0, L) and we find

that the usual scaling form as in Eq. (1.5)

Ω(R0, L) ∼ L−β/νG
[
(R0 −R0c)L1/ν

]
(2.11)
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Figure 2.12: (a) Variation of the order parameter Ω(R0, L)) against R0 for the system
sizes L = 256 (black), 512 (red), and 1024 (blue). (b) Finite-size scaling plot of the
same data using R0c = 0.925, 1/ν = 0.75 and β/ν = 0.11 exhibits a very nice data
collapse.

works very well [Fig. 2.12(b)]. The exponents ν and β bears the same meaning as the

ordinary percolation. Our best collapse of the data corresponds to 1/ν = 0.75 and

β/ν = 0.110(5). Expectedly, these values are consistent with the exact values of the two

dimensional percolation exponents ν = 4/3 and β = 5/36, i.e., β/ν = 5/48 ≈ 0.1042 [6].

The entire set of calculation has been repeated using the product rule and the results

are found to be very similar to those of the sum rule except R0c = 0.978(5).

2.8 Summary

Motivated by how the global connectivity is established in a wireless sensor network

with non-uniform ranges of transmission of the sensor nodes, we have introduced and

studied a model in the framework of percolation theory. Precisely, we have studied

the global connectivity properties of a system using a collection of circular disks with

uniformly distributed radii mimicking the non-uniform transmission ranges of the sensor

nodes. Sites of a square lattice are occupied randomly by disks with probability p as in

the site percolation and after occupying a given site, the center of a disk is assigned

to the site by drawing a random value R from a uniform distribution for its radius.
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Clearly, there exists two different sources of disorder in the model. According to this

model, a bond between a pair of neighboring occupied sites is said to be connected if

the disks with radii R1 and R2 situated at these sites fulfill certain condition. Such

a condition is most generally described by dividing the whole R1-R2 plane into two

regions by a closed curve of any arbitrary shape: points within one region correspond to

the connected bonds, whereas the other region represents the unconnected bonds. The

study of three different rules for the criterion of defining a connected bond under this

general formulation always indicates that the percolation threshold varies continuously

within pc(sq)6 pc 6 1. The nature of the percolation transition is continuous, but the

approach of the percolation threshold to its two limiting values are characterized by

two exponents ζ and η. These exponent values are found to be same (within error

bars) for all three specific rules considered here. Moreover, our analysis even on a

fully occupied lattice by disks with uniformly distributed radii R ∈ {0, R0} reveals

that a percolation transition can occur by tuning the maximal radius R0 of the disks.

Estimation of different critical exponents lead us to conclude that our model exhibits

universal features of the ordinary percolation transition and therefore, both the models

belong to the same universality class.
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Chapter 3

Double Transition in a Model of

Oscillating Percolation

3.1 Introduction

Obtaining the large-scale connectivity is a matter of great importance in different

scientific disciplines including physics, biology and several areas of communication

systems. Inability to achieve such global connectivity might result in some serious

effect on today’s world, especially on human life. For instance, fatal consequences

can occur due to any sudden interruptions during aviation communication which is

extremely important for pilots and crews to be in touch with other flights and air

traffic controllers. The disorder in the ranges of transmitters and receivers associated

with this kind of electronic communication systems often causes such interruptions.

In the previous Chapter, we have discussed how the spatial heterogeneity in these

ranges affects the global connectivity properties of the system. Additionally, effect of

temporal fluctuations of the transmission ranges on the connectivity in large-scale has

been studied in detail in this Chapter 1.

Most commonly, wireless sensor networks (WSNs) [26] are used for such communi-
1The work reported here is based on the paper “Double transition in a model of oscillating

percolation”, Sumanta Kundu, A. Datta, and S. S. Manna, Phys. Rev. E 96, 032126 (2017).
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cation purposes. As described in the previous Chapter, every sensor node in a WSN

receives, stores and transmits the data packets wirelessly. Hence a sensor node can

forward the data packets to another node situated at a far apart distance through

overlapping radio transmission ranges of intermediate nodes. Moreover, such multi-hop

relaying enables the low power and limited storage capacity sensor nodes to connect

with the base station where the collected data packets are finally aggregated. It is

well-known that the transmission ranges of the sensor nodes fluctuate temporally due

to noise and interference [131–133]. As a result, the communication between a node

and the base station through a multi-hop path may be interrupted. Since each sensor

node has very little buffer space and packets that cannot be immediately transmitted

are usually dropped, it is therefore important to know when such a path exists enabling

the node to forward its packets to the base station without any need for buffering

the packets in intermediate nodes. In reality, such temporal variations exist in above-

ground [132, 133], above-ground to underground [134] and aerial-sensor networks [135].

The speed of variation of these transmission ranges is usually much slower compared

to radio transmission speed and hence a multi-hop path persists for a long enough

duration for transmitting packets in a WSN.

Here, based on our publication [128], we introduce and study a percolation model

which provides useful theoretical insights about how the global connectivity can be

achieved in the presence of such time-varying transmission ranges in a WSN. In

particular, our goal is to find the ranges in the values of the model parameters within

which an uninterrupted global transmission of information can be ensured. In the model,

the sites of a regular square lattice are occupied by circular disks of time-varying radii

R(t) which pulsate sinusoidally. This scenario mimics the temporal variations of the

transmission ranges of the sensor nodes as these ranges may be compared with the radii

of the disks. The disks start pulsating with initial random phase angles which makes

the system heterogeneous. A lattice bond is defined as connected if and only if the

disks at the two ends of the bond overlap. Accordingly, as the system evolves with time
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the configuration of connected bonds changes and due to initial random phase angles

different bonds remain connected for different durations of time. In general, sometimes

the bond configuration connects the two opposite sides of the system through a spanning

path and sometimes does not. Thus, the system oscillates between percolating and

non-percolating phases with time. The duration of time the system remains in the

percolating phase is dependent on the value R0 of the maximal radii of the disks and

thus, R0 acts as the control variable in the model. In the time-averaged description,

the system always exhibits a global connectivity through the set of connected bonds

when R0 exceeds a critical value R0c in the limit of asymptotically large system. A

consideration of propagation of information with infinite speed within a cluster lead us

to identify two distinct transition points. Clearly, in the regime R0 > R0c information

transmits instantly through the entire system. More interestingly, global propagation

of information is even possible for R0 < R0c, where there exists only isolated finite-size

clusters and a finite amount of time is required for the information propagation. This

time increases as R0 is decreased and diverges as R0 → R∗0. At this point the system

undergoes another percolation transition. The critical behavior of the system at both

the transition points have been studied here throughly. This study may also be relevant

in the context of disease spreading in a population in the form of an epidemic, spreading

of computer viruses through the Internet, and even for rumor spreading in the social

media, etc.

The organization of this Chapter is as follows. We start by describing the model

of oscillating percolation in Sec. 3.2. The variation of the order parameter and the

spanning probability are described in Sec. 3.3. In Sec. 3.4, we discuss the dependence

of the percolation properties on the frequencies of the pulsating disks. In Sec. 3.5, we

have observed the existence of a second percolation transition point defined in terms of

two time scales for the speed of information propagation through a series of finite-size

clusters of connected bonds. In Sec. 3.6, we discuss the role of a shift parameter on the

percolation transitions. A phase diagram is constructed by generalizing the model in

50



Chapter 3 3.2. Model

Figure 3.1: Snapshots of the time dependent percolation configuration have been
shown on a square lattice of size L = 24 with periodic boundary conditions along the
horizontal direction. The radii of all the disks having angular frequency ω = 1 pulsate
with time as per Eq. (3.1) and are different at a given time t due to the random initial
phases {φ}. For R0 = 0.85, the snapshots are taken at t = 150dt, 300dt, 500dt and
600dt (clockwise from top-left corner), where dt = π/L2. The largest cluster painted in
magenta sometimes spans the entire lattice and sometimes does not.

Sec. 3.7. Finally, we summarize in Sec. 3.8.

3.2 Model

Every site of a regular square lattice of size L×L with unit lattice constant is assigned

a circular disk of radius R(t) that varies with time t. For simplicity, we consider a

periodic variation of the radii of the disks. The radii varies in a sinusoidal manner as

R(t) = (R0/2)[sin(ωt+ φ) + 1], (3.1)
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where R0 is the maximal radius of a disk; φ and ω are the two parameters which denote

the phase angle and the angular frequency, respectively. Therefore, R0 is the only

control variable of the model and its value is tuned in the range between [0, 1]. Initiall

a phase angle is associated with every lattice site by drawing its value randomly from a

uniform probability distribution p(φ) = 1/2π, 0 6 φ < 2π and accordingly, a disk of

radius R(0) calculated using Eq. (3.1) at time t = 0 is placed with its center at the site.

The disorder in phase angles which has been mentioned here is specifically quenched

disorder. With this only source of randomness, the radii of the disks start pulsating

between [0, R0] according to Eq. (3.1) and as a consequence, the disks configuration

evolves with time in a completely deterministic fashion. A periodic boundary condition

has been imposed along the horizontal direction and an open boundary condition along

the vertical direction.

Overlapping of the nearest neighbor disks is considered as the criteria for determining

the set of connected bonds at any particular instant of time t. Since the lattice constant

is unity, for a connected bond between a pair of neighboring disks of radii R1(t) and

R2(t) the condition

R1(t) +R2(t) > 1, (3.2)

must be satisfied. This is referred as the ‘sum rule’. The bonds which do not satisfy

Eq. (3.2) are unconnected bonds. Due to the periodic nature of the time evolution of

the disks the connection status (i.e., connected / unconnected) of every bond over a

period T = 2π/ω would be repeated ad infinitum. Evidently, the bond configurations

at two successive time steps are correlated. Typically, a bond remains connected state

for a certain interval of time and then in the unconnected state. At a given instant

of time, there exist several clusters of sites interlinked through the connected bonds.

These clusters are of various different shapes and sizes. Depending on the value of R0,

during the time evolution the largest one among these clusters sometimes spans between

two opposite boundaries of the lattice and therefore establishes global connectivity,
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Figure 3.2: For ω = 1 and L = 128, the phase representing variable η(t) has been
plotted with t during a period T for R0 = 0.88, 0.90 and 0.92 (from top to bottom).
The value of η(t) = 1 and 0 correspond to the percolating and non-percolating phases,
respectively.

and sometimes does not. In Fig. 3.1, we demonstrate this using the snapshots of the

percolation configurations taken at four different instants of time for a fixed value of

R0. Therefore, within one period of time T , the system in general switches between

the percolating and non-percolating phases. We define a flag η(t) =1 and 0 for the

percolating and non-percolating phases, respectively, and its variation is exhibited in

Fig. 3.2. On increasing the value of R0, more and more bonds would be connected

for more longer duration of time and consequently, the average residence time in

percolating phase increases with R0. To estimate how much the disk configuration

becomes different from its initial configuration in time t we define a hamming distance

∆(t) = max{|Ri(t)−Ri(0)|} calculated over all sites i. For a given time t, the quantity

|Ri(t) − Ri(0)| differs from site to site due to initial random phase angles and has a

functional form R0 cos(ωt/2 + φ) sin(ωt/2). Maximizing this quantity with respect to

φ finally yields ∆(t) = R0 sin(πt/T ).
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Figure 3.3: For ω = 1, and the system sizes L = 64 (black), 128 (red), and 256 (blue)
(arranged from left to right). (a) The spanning probability Π(R0, L) has been plotted
against R0. (b) Finite-size scaling plot of the same data with R0c = 0.908(5) and
1/ν = 0.75 exhibits a very nice data collapse.

3.3 Order Parameter and Spanning Probability

The order parameter Ω(R0, L) is defined as the average size of the largest cluster scaled

by L2. In this problem, it is doubly averaged with respect to time between 0 and T

and over many initial configurations C characterized by different sets of random phase

angles {φi}. Therefore,

Ω(R0, L) = 〈〈smax(R0, L)〉T 〉C/L2. (3.3)

We also calculate the probability of finding the system in the percolating state where

there exists at least one cluster spanning between the top to the bottom of the lattice.

This particular quantity is termed as the spanning probability Π(R0, L).

In numerical simulations, time is incremented in equal steps of dt = T/(2L2).

Imposing periodic boundary conditions along the horizontal direction, the global

connectivity is determined along the vertical direction. Therefore, the geometry of the

system under study is essentially a cylinder. Both the quantities Ω(R0, L) and Π(R0, L)

are estimated for a large number of values of 1/2 < R0 6 1 with a minimum increment

of ∆R0 = 0.001.
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Figure 3.4: For ω = 1, (a) variation of the order parameter Ω(R0, L) as defined in
Eq. (3.3) with R0 has been shown for the system sizes L = 64 (black), 128 (red), and
256 (blue) (arranged from left to right); (b) finite-size scaling of the same data using
R0c = 0.908(5), 1/ν = 0.75 and β/ν = 0.114(5) exhibits an excellent data collapse.

In Fig. 3.3(a), Π(R0, L) has been plotted against R0 for three different system

sizes using ω = 1 for all disks. These curves intersect approximately at the point

[R0c,Π(R0c)]. By visual inspection we estimate R0c ≈ 0.90 and the spanning probability

Π(R0c) ≈ 0.63 which is quite consistent with the value 0.636454001 [136] obtained

using Cardy’s formula [137]. For a more precise estimation of R0c we define R0c(L) for

individual system sizes by Π[R0c(L), L] = 1/2. The R0c(L) values are estimated by

linear interpolation of the data in Fig. 3.3(a) and then these values are extrapolated to

L→∞ to obtain R0c. Tuning the value of R0c the difference R0c − R0c(L) has been

plotted against L−1/ν and the best least-squares fitted straight line passes the origin

closely for R0c = 0.908(5). Here we used ν = 4/3, the correlation length exponent of

the ordinary percolation. Further, a finite-size scaling analysis has been performed in

Fig. 3.3(b), where we plot Π(R0, L) against (R0 −R0c)L1/ν . An excellent data collapse

for all three system sizes in Fig. 3.3(b) indicates the finite-size scaling form

Π(R0, L) ∼ G
[
(R0 −R0c)L1/ν

]
. (3.4)

We repeat the whole set of analyses for the order parameter Ω(R0, L). In Fig. 3.4(a),
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we exhibit the variation of Ω(R0, L) against R0 for the same three system sizes and the

corresponding finite-size scaling plot has been shown in Fig. 3.4(b). The collapse of

data onto a single curve indicates the following scaling form

Ω(R0, L)Lβ/ν ∼ F
[
(R0 −R0c)L1/ν

]
. (3.5)

Our best data collapse corresponds to β/ν = 0.114(5) which is consistent (within error

bar) with the exact value of β/ν = 5/48 ≈ 0.1042 with β = 5/36 [6] for the ordinary

percolation.

3.4 Percolation with Distributed Frequencies

Now we consider the situation where each disk is randomly assigned a frequency ω1

with probability f and frequency ω2 with probability 1− f with previously prescribed

random phase angles. The time period T(ω1,ω2) has been calculated numerically for a

large number of pairs of angular frequencies, where the frequencies are the rational

numbers. Since for two rational numbers a/b and c/d, HCF(a/b, c/d) = HCF(a, c)

/ LCM(b, d), HCF and LCM being the highest common factor and lowest common

multiplier, respectively, we find the following functional form

T(ω1,ω2) = 2π/HCF(ω1, ω2). (3.6)

This is found to be independent of 0 < f < 1. A generalized form of the above expression

for T can further be given for the mixture of N distinct frequencies ω1, ω2, ..., ωN as

T(ω1,ω2,...,ωN ) = 2π/HCF(ω1, ω2, ..., ωN). (3.7)

Using the mixtures up to five distinct frequencies we numerically verified the above

formula. For example, the time period has been estimated using the plot of ∆(t)
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Figure 3.5: Plot of ∆(t) against t for L = 64, R0 = 1 and for one initial configuration.
The system is composed of three different types of disks characterized by their own
frequencies: ω1 = 1/3, ω2 = 2/3 and ω3 = 4/3. Here, we find that the minimum value
of ∆(t) = 2.96× 10−4 is at t = 18.85. The numerical estimate of T = 18.85 matches
considerably well with the value of T = 6π calculated using Eq. (3.7).

against t in Fig. 3.5 for three distinct frequencies. The value of ∆(t) close to zero

for the first time for t sufficiently larger than zero indicates the re-occurrence of the

initial configuration. We found that the transition point R0c is not dependent on the

frequencies ω1 and ω2 of the disks.

This model is further extended by assigning a distinct frequency to each disk drawing

them from a uniform distribution p(ω) between [0,1]. In this case, T is very large and

therefore we run the simulations up to a finite time t = 10π, in steps of dt = 2π/(2L2).

Surprisingly, the transition point R0c = 0.908(5), the crossing probability ≈ 0.63 and

the set of critical exponents remain unaltered within our numerical accuracy i.e., they

do not depend on the actual number of distinct frequencies.

here we give an explanation for this frequency independence. Let p(R) be the

probability distribution of the radii of the disks. We argue that p(R) is independent of

time using Eq. (3.1). Introducing a variable Q = ωt, the joint distribution function

p(Q,R) can be expressed in terms of the distribution functions of the two mutually

independent variables Q and φ as, p(Q,R) = p(ωt)p(φ)|J(Q,R)|, where J(Q,R) is

the Jacobian of the transformation. This follows directly from the conservation of
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probability. Finally, the marginal distribution of R is calculated from p(Q,R) and has

the form

p(R) = 1
/(

π
√
RR0 −R2

)
, (3.8)

independent of the distribution of p(ω). Here we note that for a system having a uniform

distribution of disk radii between [0, R0], the transition occurs at R0c = 0.925(5) [35].

The form of p(R) in Eq. (3.8) has also been verified numerically and the matching is

very good (not shown here). Using this equation one can calculate the probability for

that a bond is connected. Neglecting local correlations and equating the bond formation

probability to 1/2, the random bond percolation threshold on a square lattice, one

obtains an approximate estimate of R0c = 1.

3.5 The Second Percolation Transition

In this section we exhibit that a second percolation transition exists in terms of

the passage time for information propagation. For this description we consider that

information propagates with infinite speed within a cluster of connected bonds i.e.,

spreads instantly to all sites of the cluster irrespective of the site of its introduction.

This implies that for R0 > R0c there exists a spanning cluster across the system through

which information can be transmitted at the same time instant from one side of the

system to its opposite side. On the other hand, for R0 < R0c there are finite isolated

clusters of connected bonds which dynamically change their shapes and sizes.

Now we introduce the second mechanism for information propagation. We assume

that the sites of an isolated informed cluster of connected bonds retain the information

with themselves forever. In a latter time during the time evolution, this informed cluster

may merge with another uninformed cluster and information would then propagate

instantly to the sites of the new cluster. It is therefore apparent that if one waits long

enough, may be several multiples of the time period T , it is likely that information

would propagate through the system even when R0 < R0c. More elaborately, all sites
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at the top row of the square lattice are given some information at time t = 0. This

information is instantly transmitted to all sites of all clusters that have at least one site

on the top row. All these sites are now informed sites and they keep the information

with them. Since time is increased in steps of dt, at the next time step the status of

every bond is freshly determined and some new sites (clusters) may get linked to these

informed sites through a fresh set of connected bonds. Immediately, the information is

transmitted again to all sites of all these clusters. In this way the information spreads to

more and more sites of the entire lattice. Sometimes it may happen that the spreading

process pauses for few time steps, though the status of different bonds are still changing.

We assume that the spreading process terminates permanently when the information

reaches the bottom of the lattice. The time required on average for this passage is

denoted by TI(R0, L). Since the average number of connected bonds in the system

decreases when the value of R0 is decreased, this average information passage time

increases. Finally, TI(R0, L) diverges when R0 approaches R∗0 from above. Therefore,

we recognize R∗0 as the second critical point of percolation transition.

All the bonds do not take part in the information propagation. Accordingly, we

classify the whole set of bonds into two categories as described in the next subsection.

3.5.1 Live and Dead Bonds

Figure 3.6 illustrates that the phase difference ∆φ = |φ2−φ1| between the two pulsating

disks at the ends of a bond plays a crucial role in determining the connectivity status

of the bond. For R0 = 1/2, the bond is connected only at a single instant within

the time period T if the disks are in the same phase, whereas, for R0 = 1 the bond

remains always connected if the disks are in the opposite phase. This implies that for

1/2 < R0 < 1, a bond is connected within a period T only when the phase difference of

the two end disks lies within a certain range. For a bond to be connected at least once

during the whole time evolution, the maximum value of the sum R1(t) +R2(t) must be
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Figure 3.6: Schematic representation of the live and dead bonds. Using R0 = 0.7 and
ω = 1, the time variations of the radii of the disks at the ends of a bond have been
shown for two different values of the phase difference ∆φ. For ∆φ = π/4 (a), the bond
is a live bond as it remains connected for a certain duration of time, whereas the bond
with ∆φ = 3π/4 (b) is a dead bond.

greater than unity which gives

R0[cos(∆φ/2) + 1] > 1. (3.9)

This immediately implies that for a connected bond

∆φ 6 ∆φc = 2 cos−1
(

1/R0 − 1
)
. (3.10)

This range increases with increasing the value of R0.

Evidently, some bonds remain unconnected forever for which ∆φ > ∆φc. We call

these bonds as the “dead” bonds. In contrast, the remaining set of bonds dynamically

changes their connectivity status within a period T and are referred as the “live” bonds.

Therefore, the sets of connected bonds that appear at different times during the time

evolution are the subset of these live bonds. In general, at any instant of time the dead

bonds co-exist with the live bonds and the corresponding bond densities are represented

by pd and pl, respectively. Expectedly, pd increases when R0 is decreased from 1 and it

approaches unity as R0 → 1/2. As the distribution of the phase angles p(φ) is uniform,
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Figure 3.7: The density of dead bonds pd(R0) has been plotted against R0 which never
get connected during the entire time evolution. The numerically obtained data for
pd(R0) using system size L = 256 (filled circles) fit excellently well with the functional
form given in Eq. (3.11) (solid line).

the quantity pd(R0) is calculated as

pd(R0) = 1− 2p(φ)∆φc

= 1− (2/π) cos−1
(

1/R0 − 1
)
. (3.11)

In Fig. 3.7, the numerically estimated values of pd(R0) for different R0 and the functional

form given in Eq. (3.11) have been plotted. An excellent agreement is observed between

the two plots.

Due to the random initial phase angles {φ}, different bonds stay connected for

different duration of time. Precisely, the fraction of time over which a bond remains

connected within a period T is given by

fT (R0,∆φ) = 1/2− (1/π) sin−1
(

(1/R0 − 1) sec(∆φ/2)
)
. (3.12)

For the special case of R0 = 1 and ∆φ = π we get fT = 1. We can also retrieve the Eq.

(3.10) from the fact that for a connected bond we must have fT (R0,∆φ) > 0.
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3.5.2 Determination of the Second Transition Point

It is clear that information can propagate only through the live bonds and therefore, for

a global passage of information across the system, it is necessary that the system must

have a spanning cluster of live bonds. This leads us to identify the second transition

point R∗0 as the configuration averaged minimum value of R0 when a spanning cluster

of live bonds appears in the system. For every initial configuration of random phase

angles {φ}, Eq. (3.10) enables us to immediately determine the status of every bond,

whether live or dead. This gives a frozen configuration of live and dead bonds. Tuning

the value of R0 from 1/2 density of live bonds monotonically increases from 0 and at a

threshold value of R0 = R∗0, the global connectivity first appears through a spanning

path of live bonds. Numerically, the precise value of R∗0 has been estimated using the

bisection method in the following way. To start with, we select a pair of values of R0,

namely, Rhi
0 and Rlow

0 , such that for R0 = Rhi
0 there exists a global connectivity through

the live bonds, whereas no such connectivity exists for R0 = Rlow
0 . Applying periodic

boundary conditions along the horizontal direction, the global connectivity is checked

along the vertical direction using the Burning algorithm [56] for R0 = (Rhi
0 +Rlow

0 )/2. If

the system is globally connected, then Rhi
0 is replaced by R0, otherwise Rlow

0 is replaced

by R0. This way the interval is successively bisected till it becomes smaller than a

pre-assigned tolerance value of 10−7. Averaging over a large number of independent

configurations R∗0(L) for the system size L is estimated. The entire procedure is then

repeated for different values of L and extrapolated to the asymptotic limit L → ∞

to obtain R∗0 = R∗0(∞). We find that the usual extrapolation method using L−1/ν

with ν = 4/3 works very well here as well. Our best estimate for the critical point is

R∗0 = 0.5907(3).

To characterize precisely the critical behavior around the second transition point in

terms of the live bonds, we have also estimated several critical exponents. The fractal

dimension df of the largest cluster of live bonds, the exponent γ for the second moment

of the cluster size distribution at R∗0, and the order parameter exponent β around
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Figure 3.8: (a) Average passage time for information propagation TI(R0, L)/L2 has
been plotted against the deviation from the critical point R0 − R∗0(L) for L = 32
(black), 64 (red), 128 (blue) and 256 (magenta) (arranged from bottom to top) using
ω = 1 for all the disks. As R0 → R∗0(L), the time TI(R0, L) diverges. (b) A scaling by
TI(R0, L)/L3.04 against [R0 −R∗0(L)]L0.07 exhibits a good data collapse.

R∗0. The obtained values of the exponents are very much consistent with the ordinary

percolation exponents in two dimensions.

An approximate estimate of the critical point R∗0 can also be made by neglecting

the local correlations and equating the density of live bonds at the second transition

point to the ordinary bond percolation threshold on the square lattice, i.e.,

pl(R∗0) = 1− pd(R∗0) = 1/2. (3.13)

Substituting the functional form of pd(R0) as given in Eq. (3.11) to the above equation

and solving for R∗0 we obtain R∗0 = 2/(2 +
√

2) ≈ 0.5858, which is very close to our

numerically obtained value of R∗0 = 0.5907(3).

3.5.3 Information Propagation Time

The time required for the global propagation of information is measured in steps of

dt. In Fig. 3.8(a), the average information propagation time TI(R0, L)/L2 has been

plotted against R0 −R∗0(L) for four different system sizes using ω = 1 for all the disks.

It is observed that as R0 approaches R∗0 from above, the propagation time becomes
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larger and larger and it diverges as R0 → R∗0. For R0 < R∗0, no such global propagation

of information is possible . Further, for a specific value of R0, the propagation time

increases with the size of the system. By suitably scaling the abscissa and ordinate,

and plotting the same data we obtain a good data collapse as shown in Fig. 3.8(b).

Precisely, the data collapse is obtained when TI(R0, L)/L3.04 has been plotted against

[R0 − R∗0(L)]L0.07. This is consistent with the variation of the largest passage time

which grows as TI(R∗0, L) ∼ L3.08 and thus, the propagation time TIdt ∼ L1.08. This

exponent is very close to the shortest path fractal dimension of 1.130772(2) [44] for the

ordinary percolation in two dimensions.

3.6 Role of the Shift Parameter

We further extend our study by introducing a shift parameter that enhances the disk

radii by an amount Rs. Therefore, the radius of a disk now sinusoidally varies between

Rs and R0 +Rs as:

R(t) = Rs + (R0/2)[sin(ωt+ φ) + 1]. (3.14)

We study the dependence of the first and second transition points on the value of Rs.

For a specific value of Rs, it is now more likely that the radii of the disks at the two

ends of a bond would satisfy the sum rule. Therefore, the density of connected bonds

at any given instant of time t increases as Rs is increased. As a consequence, for a fixed

non-zero value of Rs the first transition takes place at a lower value of R0 = R0c(Rs)

compared to its value R0c for Rs = 0.

We have studied the variation of the order parameter Ω(R0, Rs, L) against R0 for

three different shifts Rs. In Fig. 3.9(a), for each Rs three different system sizes L have

been exhibited. Using the same data, we show that the finite-size scaling form

Ω(R0, Rs, L)Lβ/ν ∼ F
[
(R0/(1− 2Rs)−R0c)L1/ν

]
(3.15)
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Figure 3.9: For Rs = 0.001 (black), 0.05 (red) and 0.1 (blue) (arranged from right
to left), and for L = 64, 128 and 256 for each Rs. (a) The variation of the order
parameter Ω(R0, Rs, L) with R0 has been shown using ω = 1 for all the disks. (b)
The same data as in (a) has been scaled suitably. A scaling by Ω(R0, Rs, L)Lβ/ν
against [R0/(1− 2Rs)−R0c]L1/ν with R0c = 0.908(5), 1/ν = 0.75 and β/ν = 0.112(5),
exhibiting a nice data collapse.

for the order parameter works very well with R0c = 0.908(5) [Fig. 3.9(b)]. The

best collapse of data has been obtained using 1/ν = 0.750(5) and β/ν = 0.112(5).

Expectedly, the critical exponents are consistent within error bars with the exponents

of the ordinary percolation in two dimensions.

It is straightforward to obtain the functional dependence of the first transition point

R0c(Rs) on Rs from the scaling of data in Fig. 3.9(b). Clearly, the scaling variable

[R0/(1− 2Rs)−R0c]L1/ν = 0 at R0 = R0c(Rs). This yields

R0c(Rs) = (1− 2Rs)R0c. (3.16)

Numerically obtained values of R0c(Rs) match very well with those from Eq. (3.16).

Similarly, the second transition point depends on Rs as

R∗0(Rs) = (1− 2Rs)R∗0, (3.17)

where R∗0 = R∗0(0). Introduction of the shift parameter Rs effectively reduces the lattice

constant by an amount 2Rs as the minimal distance between the neighboring disks is
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Figure 3.10: Phase diagram has been drawn on p−R0 plane using the angular frequency
ω = 1 for all the disks and the shift parameter Rs = 0, where R0 and p denote the
maximal radii of the disks and the site occupation probability, respectively. The two
distinct critical curves on this plane correspond to the first (green) and second (red)
transitions.

(1− 2Rs). This explains the origin of the factor (1− 2Rs) in Eq. (3.16) and Eq. (3.17).

3.7 Phase Digram

So far we have considered only a specific situation where every lattice site is occupied

by a pulsating disk and therefore, the site occupation probability p = 1. Further, the

model can be studied for any general value of pc 6 p 6 1, where pc is the site percolation

threshold of the corresponding lattice. Initially, a configuration of occupied sites is

generated as in the site percolation with site occupation probability p. Then, a random

value for the phase angle is assigned with every occupied site and the corresponding

disk with radius R(0) at time t = 0 is associated with these sites. Subsequently, the

system is allowed to evolve with time according to Eq. (3.1). For a given value of p

there exists a critical value of R0c(p) where the first transition takes place. Similarly,

the second transition point R∗0(p) also dependent on p. Calculating R0c(p) and R∗0(p)

for various values of p with Rs = 0 and ω = 1 for all the disks, we construct a phase

diagram on the p−R0 plane. In this plane, we have drawn two critical curves which
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represent phase boundaries corresponding to the first and second transitions. The

corresponding phase diagram has been shown in Fig. 3.10. Therefore, the whole p−R0

plane gets divided into three separate regions. In region I, there always exists a spanning

cluster of connected bonds and thus, information propagates instantly through the

system. In region II, a spanning cluster of live bonds exists, but there does not exist

a spanning cluster of connected bonds and therefore, finite time is required for the

global propagation of information. In region III, no such spanning clusters exist and

information can not be transmitted across the system.

3.8 Summary

In the context of studying the global connectivity properties of the wireless sensor

networks in the presence of temporal fluctuations of radio transmission ranges, we have

formulated a percolation model using a collection of pulsating disks and observed two

distinct transition points. Every site of a regular lattice is occupied by a circular disk

whose radius vary sinusoidally within [0, R0]. A random phase angle is associated with

every pulsating disk and this makes the system heterogeneous. At any given instant of

time the set of connected bonds is determined using the sum rule. Precisely, a lattice

bond between a pair of neighboring sites is said to be connected only when the disks

situated at these sites overlap. The maximal value of the disks radii R0 is considered

as the control variable of the model.

Two different time scales can be associated with the dynamics of information

propagation, leading to two distinct transition points. In the time-averaged description,

the appearance of global connectivity through the spanning cluster of connected bonds

characterizes the first transition point. Our numerical simulations estimate that the

transition occurs at R0 = R0c = 0.908(5), independent of the distribution of the

frequencies of the individual disks. A Consideration of the propagation of information

within a cluster with infinite speed immediately implies that information transmits
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through the spanning cluster instantly for all R0 > R0c. Interestingly, the global

transmission of information across the system is also possible for R0 < R0c when only

isolated finite-size clusters of connected bonds are present in the system. The clusters

of sites which receive information, store it forever and pass the information when these

informed clusters come in contact with the uninformed clusters in the subsequent

time steps. The time associated with this global transmission of information is finite

and it diverges as R0 approaches R∗0 from above, R∗0 = 0.5907(3) marks the second

transition point. Depending on the value of the phase differences between the disks

centered at the ends of the bonds, one can distinguish the whole set of lattice bonds in

terms of dead and live bonds. A dead bond can never be connected, whereas a live

bond gets connected at least once within a complete time period. Interestingly, the

second transition point R∗0 is characterized by the appearance of the global connectivity

through a spanning cluster of live bonds in the system. Expectedly, both the transitions

exhibit the universal critical behavior of the ordinary percolation transition since the

interaction is short ranged. Further, the model has been generalized for any arbitrary

value of the site occupation probability p, leading to a phase diagram on the p− R0

plane. This study is useful not only in the context of WSNs but also important from

the point of view of the critical phenomena.

For the future investigations, one can study this model by placing the centers of

the pulsating disks at random positions on a continuous plane by a Poisson process,

like in continuum percolation [7, 30, 130].
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Chapter 4

Colored Percolation

4.1 Introduction

In this Chapter 1, we introduce another variant of percolation model which can be viewed

as a generalization of the model of AB percolation as described in Sec. 1.4.2 in Chapter

1. In brief, a consideration of assigning A and B atoms at the occupied and unoccupied

sites, respectively, in the model of site percolation with any arbitrary site occupation

probability p and defining connectivity through the bonds between neighboring dissimilar

atoms describes the model of AB percolation [18, 59, 60]. According to this model,

the profile of the density of connected bonds is symmetric about the point p = 1/2

and decreases monotonically from its maximum value 1/2 on both sides of this point.

Consequently, the system in general exhibits a global connectivity through a sequence

of alternating A and B atoms only within a certain interval of p around p = 1/2.

However, the existence of the global connectivity crucially depends on the geometry of

the underlying lattice [60, 61]. For instance, even the maximal density of the connected

AB bonds is not sufficient to establish a global connectivity on the square lattice [61, 62],

but on the triangular lattice such a connectivity first appears at a density of AB bonds

well below its maximum value of 1/2 [63].
1The work reported here is based on the paper “Colored percolation”, Sumanta Kundu, and S.

S. Manna, Phys. Rev. E 95, 052124 (2017).
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Here we investigate a two-dimensional percolation model where the sites of a regular

lattice are occupied by atoms with probability p similar to the ordinary site percolation

and then, every atom is colored by selecting randomly one of the n distinct colors with

a given probability q. The lattice bonds, which have two different colored atoms at their

two opposite ends, are marked as connected. The global connectivity is then determined

through these connected bonds. We refer this model as “colored percolation”. The

appearance of the global connectivity at a critical value of p = pc crucially depends

on the values of n and q. Using extensive numerical simulations we have studied

the variation of pc(q, n), whose nature can be predicted using basic concepts of the

probability theory. Additionally, we have given a numerical evidence in support of

the absence of global connectivity in the AB percolation. In the following, based on

our publication [36], we present a detailed study on the percolation properties of the

colored percolation model for both the square and triangular lattices.

The organization of the Chapter is as follows. We start by describing the model

of colored percolation in Sec. 4.2, where we consider every color to be equally likely.

In Sec. 4.3, we generalize the model by introducing a preference towards the selection

of a subset of colors. Percolation transition using similarly colored bonds in addition

to the dissimilar bonds has been described in Sec. 4.4. Percolation transition mixing

the fractions of similarly and dissimilarly colored bonds are reported in Sec. 4.5. The

critical properties of the model are presented in Sec. 4.6. Finally, we summarize in Sec.

4.7.

4.2 Model

We start with an initially empty regular lattice of size L, consisting of L2 number of

lattice sites. The sites are then occupied by atoms one by one in the following way. At

each step, a vacant site is selected with probability p as in the ordinary site percolation

and then, the corresponding site is assigned an atom by selecting its color randomly
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among one of the n distinct colors with probability q = 1/n. The letters of the Roman

alphabet are used to denote the different colors. A bond between a pair of neighboring

occupied sites is declared as connected if and only if the atoms at the two ends of the

bond are of different colors. Therefore, the other bonds having same colored atoms

like AA, BB, etc., are not connected. At any arbitrary stage, the density of atoms in

the system is denoted by p and its value is tuned to change the density of connected

bonds. The density of connected bonds increases monotonically as p is increased and

depending on the value n and the geometry of the lattice, a global connectivity first

appears in the system through the set of connected bonds at a critical value of p = pc.

For n = 2, every selected site is occupied either by a A atom or by a B atom with

probability q = 1/2. Like the model of AB percolation, the size of the largest cluster of

sites interlinked through the connected bonds never assumes a macroscopic size on the

square lattice and therefore, a percolation transition is absent here. On the other hand,

our simulation results indicate that on the triangular lattice the percolation transition

occurs at pc ≈ 0.729.

For n = 3, every selected site is occupied by one of the three atoms A, B, and C

with probabilities q = 1/3. Only the AB, BC, and CA bonds are said to be connected.

In this case, there exists a percolation threshold pc ≈ 0.807 on the square lattice and

pc ≈ 0.630 on the triangular lattice. We refer this model as ABC percolation.

Such an extension of the model can be continued with four colored atoms, where A,

B, C, and D atoms are distributed with probabilities q = 1/4. Here the percolation

transition occurs at pc ≈ 0.734 on the square lattice and pc ≈ 0.591 on the triangular

lattice. This model is referred as the ABCD percolation.

This way we systematically increase the number of distinct colored atoms to define

further the ABCDE,ABCDEF,ABCDEFG, etc., colored percolation models. In

brief, we have been able to define an infinite set of percolation models by defining

connectivity through the bonds between dissimilar atoms. For very large value of n,

hardly any bonds with similar colored atoms at their opposite ends would be found in
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Figure 4.1: Typical configurations of AB, ABC, ABCD, and ABCDE percolation
(from left to right) at their critical points have been shown on a 24× 24 square lattice
with periodic boundary conditions along the horizontal direction. The colors used
are: red (A), green (B), yellow (C), blue (D) and orchid (E) and are distributed
with uniform probabilities. The corresponding bond configurations with the spanning
clusters painted in magenta have been shown in the lower panel. It may be noted that
for AB percolation, there is no spanning cluster even when all the sites are occupied.

the system and therefore, this model reduces to the ordinary site percolation in the

limit n→∞. Figure 4.1 shows the images of the typical percolation configurations on

the square lattice for four different values of n.

4.2.1 Order Parameter

The size of the largest cluster for a particular value of p and for the system of size L is

denoted by smax(p, L) and as before, the scaled average size of the largest cluster is

defined as the order parameter Ω(p, L) = 〈smax(p, L)〉/L2. The average is taken over

many independent configurations. The variation of Ω(p, L) against p has been exhibited

in Fig. 4.2(a) for six different values of n on the square lattice. As the value of n is

increased, more and more connected bonds appear in the system and thereby, the sharp

rise in the order parameter curve shifts towards smaller values of p.
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Figure 4.2: For n = 3 (black), 4 (blue), 5 (green), 6 (orange), 7 (maroon), and 8
(red): (a) the order parameter Ω(p, L), has been plotted against the site occupation
probability p for the square lattice of size L = 1024 (n increases from right to left);
(b) plot of the percolation thresholds pc(n, L) against L−1/ν using ν = 4/3 (n increases
from top to bottom). By extrapolating the straight line in the limit L→∞, we obtain
the asymptotic values of the percolation threshold pc(n).

4.2.2 Percolation Threshold

The percolation threshold is determined using the method described in Sec. 1.2.1 in

Chapter 1. As in the site percolation, here also the size of the largest cluster increases

monotonically with increasing the value of p, whereas the variation of the second largest

cluster is non-monotonic. In a typical run α, the second largest cluster may merge

several times with the largest cluster and thereby causes multiple jumps in the size of

the largest cluster. At a specific value of p, when the maximum of the second largest

cluster merges with the largest cluster, the maximal jump in the size of the largest

cluster takes place. This particular value of p is considered as the percolation threshold

pαc for the specific run α [36, 43]. For a fixed value of n, a large number of independent

runs are considered and the pαc values are averaged to obtain pc(n, L) = 〈pαc 〉 for the

system size L. In our simulation, periodic boundary conditions are imposed along both

the vertical and horizontal directions. We use the Newmann-Ziff algorithm described

in reference [42] for the purpose of evaluating the value of smax(p, L) over the entire

range of p.

73



Chapter 4 4.2. Model

For a given value of n, the pc(n, L) values are extrapolated as before using

pc(n, L) = pc(n)− AL−1/ν (4.1)

to obtain the asymptotic value of the percolation threshold pc(n) in the limit L→∞,

where ν is the correlation length exponent. Using 1/ν as a free parameter we varied its

trial values at the interval of 0.001 and found by the least-squares fitting method that

the best values for all n differ from 3/4 by at most 0.005. Therefore, in the rest of our

calculation we have used ν = 4/3, the exact value of the exponent in two dimensions [6].

The plot of pc(n, L) against L−1/ν using a linear scale has been shown in Fig. 4.2(b) for

six different values of n. We observe that for each n the data points fit excellently to a

straight line. By extrapolating the straight lines in the limit L→∞ and measuring

the y intercepts we estimate the asymptotic values of pc(n). The values of pc(n) for

first few values of n are listed in Table 4.1 for square and triangular lattices. It is to

be noted that, for each value of n, the pc(n, L) values are calculated numerically using

L = 64, 128, 256, 512, 1024, and 2048.

Table 4.1: Numerical estimates of the asymptotic values of the percolation threshold
pc(n) for n different colored atoms occur with probability 1/n for the square and
triangular lattice geometries.

pc(n)
n Square Triangular
2 0.72890(4)
3 0.80745(5) 0.63005(4)
4 0.73415(4) 0.59092(3)
5 0.69864(7) 0.56991(5)
6 0.67751(5) 0.55679(5)
7 0.66345(5) 0.54782(3)
8 0.65342(8) 0.54130(3)
9 0.64588(5) 0.53634(2)
10 0.64002(4) 0.53245(3)
11 0.63532(5) 0.52931(2)
12 0.63147(4) 0.52672(2)
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Figure 4.3: Plot of pc(n) − pc against n (upto n = 110) on a log-log scale, using
pc = pc(sq)≈ 0.592746050 and 1/2 for the square and triangular lattices respectively.
The slope of the curves in the fitted regime have been found to be 1.020 and 1.017,
respectively.

Evidently, the density of connected bonds increases with increasing the number of

different colors and as a result, the system is observed to percolate at smaller densities

of occupied sites. As all the colors are equally likely, the probability that a bond

between two neighboring occupied sites would be a connected one is given by

pb = 1− 1/n. (4.2)

For n → ∞, pb approaches unity and therefore, for very large value of n the entire

scenario is exactly same as the ordinary site percolation. Expectedly, pc(n) approaches

pc = pc(∞), the ordinary site percolation threshold of the corresponding lattice. This

1/n dependence of pb [Eq. (4.2)] should be reflected in the percolation properties of the

system also.

To investigate how the asymptotic values of the percolation threshold pc(n), approach

to the value pc as n→∞, we first calculate pc(n) for different values of n up to n = 110.

Then, we plot the deviation pc(n)− pc against n on a double logarithmic scale for the

square and triangular lattices. The corresponding plot is shown in Fig. 4.3. Although

both the curves have curvatures at their initial regimes, for large values of n they are
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quite straight. The slopes of the curves within a window ranges between n = 16 and

110 measured as 1.020 and 1.017 for the square and triangular lattices, respectively. We

observed that these slopes approach gradually to a value unity as we shift the window

to higher values of n. This lead us to conjecture that

pc(n)− pc ∼ n−1, (4.3)

for both the lattices, consistent with the expected behavior as mentioned above.

4.3 Preferential Colored Percolation

A straightforward generalization of this model can be achieved by introducing a

preference towards the probability of selection of differently colored atoms. In the

simplest case, the occurrence of the atoms of a particular color is favored over the others.

Let us consider that the atoms of color C to be preferentially selected, whereas all

other colored atoms are equally probable. More specifically, we denote the probability

of selection of the C atoms by q and for all other atoms it is (1− q)/(n− 1). As before,

only the bonds between dissimilar atoms are declared as connected.

For a given value of q, if Probii denotes the probability that two atoms at the

opposite ends of a bond are of same color i, then the probability that a particular bond

between a pair of occupied sites would be a connected one is given by,

pb(q) = 1−
n∑
i=1

Probii

= 1− q2 − (1− q)2/(n− 1). (4.4)

The above expression describes that with increasing the value of q from 0, the pb(q)

first increases, reaches its maximum at q = qmin, and finally decreases beyond this

point. The condition dpb(q)/dq = 0 at q = qmin yields the value of qmin = 1/n. This

property of pb(q) should be reflected in the percolation properties of the system also.

76



Chapter 4 4.3. Preferential Colored Percolation

0.75 0.80 0.85 0.90 0.95 1.00
p

0.0

0.2

0.4

0.6

0.8

1.0

Ω
(p

,L
)

Figure 4.4: Plot of the order parameter Ω(p, L) against occupation probability p for
the preferential ABC percolation on square lattice of size L = 1024. The values of q
are 1/3 (black), 0.20 (red), 0.53 (blue), 0.12 (magenta), and 0.60 (green) arranged from
left to right.

Consequently, the percolation threshold pc(q) must decrease with q, till it reaches qmin

and then again increases on increasing q further.

To see this, let us first consider the model for n = 3, where the atoms A and B

are equally probable and C is selected with probability q. The variations of the order

parameter for different values of q have been shown in Fig. 4.4. For q = 0, one gets back

the n = 2 unpreferred colored percolation, and therefore, for the square lattice even a

fully occupied lattice does not percolate. Further, on increasing the value of q the BC

and CA bonds are created which eventually help the system to establish the global

connectivity. Increasing the value of q from zero, it has been observed that there exists

a threshold value of q = q1 when the global connectivity first appears, i.e., pc(q1) = 1. If

the value of q is increased further, the percolation threshold pc(q) continuously decreases

till a minimum value of pc(qmin) ≈ 0.807 at q = qmin ≈ 0.333 is reached. On increasing

q even further, pc(q) increases and reaches the value of unity again at q = q2. Beyond

this point the density of connected bonds is no longer sufficient to establish the global

connectivity. The variation of pc(q) for the entire range of q has been shown in Fig.

4.5. For each value of q, first the percolation threshold pc(q, L) for the system size L

is estimated for L = 256, 512, and 1024, and then they are extrapolated in the limit
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Figure 4.5: For the preferential ABC percolation on the square lattice, percolation
threshold pc(q) is plotted against the parameter q. The minimum of pc(q) occurs at
q ≈ 0.333 which is in agreement with its estimate of 1/3, using Eq. (4.4).

L→∞ using Eq. (4.1) to obtain pc(q).

For the triangular lattice, the curve retains its shape but in this case, even for q = 0,

there exists a percolation threshold. Since, for q = 0 the other two atoms are occupied

with probability 1/2, the curve starts with the percolation threshold pc(q) ≈ 0.729 for

q = 0. Similarly, for q = 0 and n = 4 on the square lattice this model is identical to the

ABC percolation and therefore, pc(0) ≈ 0.807.

Numerically, the values of q1 and q2 are determined using the bisection method

described as follows. To estimate q2, we start with a pair of initial values of q, namely,

qh and ql such that the system is percolating through a globally connected spanning

path for q = qh but non-percolating for q = ql at the site occupation probability p = 1.

We have applied the periodic boundary conditions along the horizontal direction and

tested for the global connectivity along its transverse direction using the Burning

algorithm [56] for q = (qh + ql)/2. If the system exhibits global connectivity, then qh is

reduced to q, otherwise ql is raised to q. This way, the interval qh − ql is iteratively

bisected until a desired accuracy of 10−7 is reached, when (qh + ql)/2 defines qα2 for

a particular run α. This calculation is repeated over a large number of independent

runs and the qα2 values are averaged to estimate q2(n, L) for specific values of n and L.

Similar procedure has been followed for q1(n, L). The entire procedure is then repeated
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Figure 4.6: For n =3 and for square lattice, plot of q2(n, L)− q2(n) against L−0.740 with
q2(n) = 0.6639 exhibits an excellent straight line which passes very close to the origin.
The value of q2(n, L) is calculated for L = 256, 512, 1024, 2048, and 4096.

for different values of L and extrapolations to L→∞ using Eq. (4.1) in this case as

well, we obtain q1(n) and q2(n). For n = 3, the best linear fit has been exhibited in Fig.

4.6 by plotting q2(3, L)− q2(3) against L−0.740, using q2(3) = 0.6639(5) on the square

lattice. Similarly, we have estimated q1(3) = 0.0414(5).

Therefore, a non-trivial value of q1(n) exists for n = 3 and n = 2 on the square

and triangular lattices, respectively. It does not exist for all other values of n. On the

other hand, q2(n) exists for all values of n > 3 and n > 2 for the square and triangular

lattices, respectively.

The density of connected bonds pb(q) corresponding to the point q = q2(n) represents

a threshold value in the correlated bond percolation scenario. Beyond this point, the

density of connected bonds is no longer sufficient to establish a global connectivity.

Neglecting the local correlations and equating pb(q2) to pbc, the random bond percolation

threshold of the respective lattices, we arrive at an expression of q2(n) using Eq. (4.4),

q2(n) =
[
1 +

[
1 + n[(1− pbc)(n− 1)− 1]

]1/2
]/
n. (4.5)

Numerically estimated values of q2(n) for different values of n using bisection method,

along with the values obtained from Eq. (4.5) using pbc = 1/2, are summarized in Table
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4.2 for the square lattice. It is observed that the values are close to each other and

differ only due to the existence of short range correlations in the system.

4.3.1 Generalized Preferential Colored Percolation

A more general version of the preferential colored percolation model is the situation

when m distinct colored atoms are equally probable and the remaining (n−m) colors

are also equally probable but occur with different probabilities. Such a generalization

can be obtained by assigning an atom of one of the m colors with probability q/m and

rest of the (n−m) colors with probability (1− q)/(n−m) at the time of occupying a

vacant site. Given that a pair of neighboring sites is occupied, the probability that the

bond between these sites would be a connected one has the dependence on q as

pb(q,m) = 1− q2/m− (1− q)2/(n−m). (4.6)

Evidently, pb(q,m) is maximum at qmin = m/n and it decreases on both sides of this

point. The expression of pb(q,m) remains unaltered if the value of q is changed from q to

(1−q) at the same time m is changed from m to (n−m), i.e., pb(q,m) = pb(1−q, n−m).

Immediately, it implies that the curve is symmetric about q = 1/2 only when m = n/2.

The percolation threshold pc(q,m) for specific values of n and m is expected to exhibit

such properties appropriately.

Table 4.2: The comparison of q2(n), evaluated using Eq. (4.5) with its numerical
estimates for different values of n for square lattice. For each values of n, numerically
q2(n, L) is calculated for L = 256, 512, 1024, 2048, and 4096 and on extrapolation to
L→∞ we obtained q2(n). Each of the reported value has an error bar of 5 in the last
digit.

n 3 4 5 6 7 8
Numerical 0.6639 0.6849 0.6927 0.6969 0.6995 0.7013
Analytical 2/3 0.6830 0.6899 0.6937 0.6961 0.6978
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Figure 4.7: The variation of the percolation threshold pc(q,m) with q for the generalized
version of the preferential colored percolation model is shown for m = 1, n = 4 (black);
m = 2, n = 4 (red); and m = 3, n = 6 (blue) for the square lattice. The curves are
arranged from top to bottom along the line q = 0.50.

Again, after extrapolation to the large L limit using Eq. (4.1) with ν = 4/3 we

obtain pc(q,m). In Fig. 4.7, the asymptotic values of the percolation threshold pc(q,m)

have been plotted against q for three pairs of values of m and n for the square lattice.

It is observed that all three curves have their own minimum which occur at qmin = 0.25,

0.50 and 0.50 for m = 1, n = 4; m = 2, n = 4; and m = 3, n = 6, respectively. Clearly,

the qmin values match excellently with our analytically estimated value of qmin = m/n.

As expected, the curves corresponding to m = n/2 are symmetric about the point q =

1/2.

4.4 Percolation using Additional Similar Bonds

Let us recall that for n = 2 case on the square lattice and for any arbitrary value of

the site occupation probability p, the density of AB bonds is maximum for q = 1/2.

In spite of that no percolation transition is observed on the square lattice since the

largest cluster of AB bonds is found to be minuscule even when p = 1. In other words,

even the maximum number of connected bonds are not sufficient to establish a global

connectivity across the system [61].
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In this section, we study a new variant of our colored percolation model where in

addition to the AB bonds, we allow also a fraction v of similarly colored bonds (like AA

and BB) to be connected. Therefore, for v = 1, the problem reduces to the ordinary

site percolation with the percolation threshold at pc(sq) ≈ 0.5927460 for the square

lattice. This suggests that for all values of pc(sq) 6 p 6 1 there should be a critical

value of v = vc(p) for the fraction of bonds between similarly colored atoms, such that

percolation transition occurs only for v > vc(p).

For p = 1, one must include a non-trivial fraction vc(1) of similarly colored bonds

to achieve a percolation transition. On a fully occupied lattice we have used again the

bisection method to obtain an accurate estimation of vc(1). Starting with two initial

values of v corresponding to the globally connected and unconnected systems, the gap

between them is reduced by successive halving of the interval. As before, the values

of vc(1, L) obtained this way have been extrapolated in the limit L → ∞ to obtain

vc(1) = 0.0651(5). It may be noted that the existence of a non-zero value of vc(1) is a

numerical demonstration of the absence of a percolation transition in the n = 2 colored

percolation as well as in the AB percolation on the square lattice.

In Fig. 4.8(a), the order parameter Ω(v, L) = 〈smax(v, L)〉/L2 has been plotted

against v for three different sizes of the system. For v = 0, only the AB bonds are

present in the system and the size of the largest cluster is minuscule, which is apparent

by the very small value of the order parameter. As the value of v is increased, the

order parameter grows monotonically and the sharpest rise occurs at a critical value

vc(1, L) leading to the occurrence of a global connectivity. A finite-size scaling analysis

is exhibited in Fig. 4.8(b) indicating a scaling form:

Ω(v, L)Lβ/ν ∼ F [(v − vc(1))L1/ν ]. (4.7)

Using vc = 0.0651, the best data collapse is observed for 1/ν = 0.745(5) and β/ν =

0.101(5), compared to the exact value of the correlation length exponent 1/ν = 3/4 and
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Figure 4.8: (a) For L = 256 (black), 512 (red) and 1024 (blue) (arranged from left
to right), the order parameter Ω(v, L) has been plotted with the bond occupation
probability v between AA or BB atoms at p = 1, for n = 2 with q = 1/2 colored
percolation. (b) By suitably scaling the abscissa and ordinate when the same data as
in (a) is replotted, a nice data collapse is observed using vc = 0.0651, β/ν = 0.101(5)
and 1/ν = 0.745(5).

β/ν = 5/48 ≈ 0.104 for the ordinary percolation in two dimensions [6]. In addition, our

estimates for the fractal dimension df = 1.896(5) of the infinite incipient cluster [15]

and the exponent γ = 2.388(5) of the second moment of the cluster size distribution at

v = vc(1, L) yield values very much consistent with the exact values of the exponents

of df = 91/48 and γ = 43/18 for the ordinary percolation which fulfill the scaling and

hyperscaling relations in two dimensions: γ/ν + 2β/ν = 2 [6].

Repeating this method for many different values of the occupation probability p we

have drawn the phase diagram in the v − p plane (Fig. 4.9). This plane is divided into

two regions by the critical curve vc(p) which separates the percolating region (above)

from the non-percolating region (below). Three different critical curves are shown for n

= 2, 3, and 4. The dependence of the critical fraction vc(p) on p for a specific value of

n is obtained by the quadratic polynomial fit of the data as exhibited in Fig. 4.9:

vc(p) = c1 + c2p+ c3p
2 (4.8)

The values of c1, c2, and c3 are given in the caption of Fig. 4.9.
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Figure 4.9: Phase diagram of the density v of similarly colored bonds and the site
occupation probability p for n = 2 (black), 3 (red), and 4 (blue) (arranged from right
to left) with q = 1/n. The critical curve is fitted very closely by the Eq. 4.8 whose
parameters are c1 = 5.01, 8.28, and 11.47; c2 = -9.48, -17.92, and -26.25; c3 = 4.55,
9.50, and 14.47 for n = 2, 3, and 4, respectively.

4.5 Generalized Colored Percolation with Similar

and Dissimilar Bonds

In this section we have generalized the model of colored percolation tuning the fractions

of the bonds between similar and dissimilar colored atoms using two independent

parameters. Specifically, for the site occupation probability p > pc, the bonds between

dissimilarly colored atoms are connected with probability u and those between similarly

colored atoms are connected with probability v. Therefore, on the u− v plane a critical

percolation curve represents the phase boundary between the percolating and the

non-percolating phases. In Fig. 4.10(a), we have shown for n = 2 and q = 1/2 a series

of critical percolation curves for different values of the site occupation probability p.

Here, the density of connected bonds is given by pb(u, v) = (u+ v)/2. The symmetry

of this expression under the interchange of u and v is reflected by the mirror symmetry

of the curves in Fig. 4.10(a) about the v = u line. This can be generalized further for

any value of n as

pb(u, v) = u+ (v − u)/n, (4.9)
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Figure 4.10: Phase diagram of the density of similarly colored bonds v and dissimilarly
colored bonds u for fixed values of p for n = 2 (a) and n = 3 (b), with q = 1/n using
L = 1024 on the square lattice. The values of p are 1.00 (red), 0.90 (orange), 0.80
(green), 0.70 (cyan), 0.65 (blue), and 0.61 (indigo) (arranged from left to right). For
every p, the region above the critical curve depicts the percolating phase.

and therefore, for n > 2 the critical curves are not symmetric about the u = v line any

more. This has been exhibited in Fig. 4.10(b) for n = 3 and q = 1/3.

A better visualization of the percolating and non-percolating phases has been

exhibited by a three-dimensional critical surface in the (u− v − p) space. Fig. 4.11(a)

and (b) exhibit such plots for n = 2 and 3, respectively. Any point within the space

enclosed by the critical surface represents the percolating phase. The intersections of

these critical surfaces with the u = 1 plane have been shown in Fig. 4.9 for n = 2, 3

and 4.

4.6 Universality Class of Colored Percolation

To confirm that the colored percolation model belongs to the universality class of

ordinary percolation, we have estimated a set of critical exponents, e. g., the fractal

dimension of the largest cluster, the cluster size distribution exponent and the fractal

dimension of the shortest paths right at the percolation threshold of the unpreffered

colored percolation.
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Figure 4.11: 3D phase diagram has been drawn in the u− v − p plane, for n = 2 (a)
and n = 3 (b), with q = 1/n using L = 1024 on the square lattice. The colored surface
separates the percolating region from the non-percolating region.

Fractal dimension: The scaled average size of the largest cluster at the percolation

threshold decreases with the system size L as 〈smax(pc, L)〉/L2 ∼ Ldf−2, where df is

its fractal dimension [15]. Our estimated values of df = 1.897(2) for n = 3 on square

lattice [Fig. 4.12(a)] and 1.895(2) for n = 2 on triangular lattice are compared with the

fractal dimension 91/48 ≈ 1.8958 of the ordinary percolation in two dimensions.

Cluster Size Distribution: The size s of a percolation cluster is the number of

occupied sites in the cluster. Cluster sizes are measured for all clusters right at the

percolation threshold, marked by the maximal jump of the largest cluster. In Fig.

4.12(b), the finite-size scaling of the data for the cluster size distribution D(s) has been

shown for n = 3 on the square lattice. An excellent collapse of the data confirms a

power-law variation: D(s) ∼ s−τ . Using the best fitted values of the scaling exponents,

we estimated τ = 2.051(5), compared to 187/91 ≈ 2.055 for ordinary percolation in

two dimensions [6]. A very similar value of 2.051(5) has been obtained for n = 2 on the

triangular lattice.

Shortest Path: Right at the percolation threshold, the average length 〈`(n, L)〉 of

the shortest path spanning the entire system has been estimated using the Burning

algorithm [56]. It is found to scale with the lattice size L as 〈`(n, L)〉 ∼ Ld` , with

d` = 1.133(2) for n = 3 on the square lattice [Fig. 4.12(c)] and 1.133(3) for n = 2
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Figure 4.12: Plots for n = 3 and q = 1/3 at the percolation threshold of the colored
percolation on the square lattice. (a) The scaled average size 〈smax(pc(L))〉/L2 of the
largest cluster plotted against the system size L gives a value of the fractal dimension
df = 1.897(2). (b) The finite-size scaling analysis of the cluster size distribution D(s, L)
has been exhibited. Plot of D(s)L3.882 against sL−1.893 shows an excellent data collapse,
that yields τ = 2.051(5). (c) The average shortest path 〈`(L)〉 has been plotted against
L for L = 128, 256, 512, 1024, 2048, and 4096. The fractal dimension of the shortest
path is estimated from the slope as d` = 1.133(2).

on the triangular lattice compared to 1.13077(2) for the ordinary percolation in two

dimensions [44].

The same set of critical exponents have been estimated for the preferential colored

percolation with q = 0.60 and we have obtained very similar matching with the

exponents of ordinary percolation.
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4.7 Summary

To summarize, we have introduced a model called “colored percolation” and formulated

its infinite number of versions in two dimensions. The sites of a regular lattice are

occupied by atoms with probability p and then every atom is colored randomly using

one of the n distinct colors with uniform probability q = 1/n. Here, a lattice bond is

defined as connected if and only if the atoms situated at the two opposite ends of the

bond are of different colors. Accordingly, the global connectivity is determined through

the connected bonds. For n = 2, the size of the largest cluster of sites interlinked

through the connected bonds remains minuscule on the square lattice even when p = 1

and therefore, a percolation transition does not occur here. However, the percolation

threshold pc(n) exists for all values of n > 3 and n > 2 for the square and triangular

lattices, respectively. It has been observed that pc(n) approaches the site percolation

threshold value pc in the limit of n→∞ as 1/n for both lattices.

In the preferential version of the colored percolation model, m out of n colors are

selected with probability q/m each and rest of the colors are selected with probability

(1− q)/(n−m). It has been observed that pc(q,m) depends non-trivially on q and has

a minimum at qmin = m/n. The plot of pc(q,m) against q is asymmetric for general

value of m, but it becomes symmetric about q = 1/2 only when m = n/2.

This model has been generalized by considering the fractions of bonds between

similarly and dissimilarly colored atoms as independent parameters. The bonds between

dissimilarly colored atoms are connected with probability u, whereas those between

similarly colored atoms are connected with probability v. There exists a critical value

of the site occupation probability p for each pair of (u, v) values where percolation

transition occurs. Estimating the percolation threshold for many different pairs of

(u, v), we construct a phase diagram in a three-dimensional (u− v− p) space. A critical

surface in this space divides the whole region into two regions, namely, the percolating

and the non-percolating regions.
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Numerical estimation of different critical exponents lead us to conclude that all ver-

sions of the model of colored percolation belong to the ordinary percolation universality

class.
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Chapter 5

Jamming and Percolation

Properties of Random Sequential

Adsorption with Relaxation

5.1 Introduction

As discussed in Sec. 1.5 in Chapter 1, the random sequential adsorption (RSA) is a

classic model in statistical physics in the context of irreversible adsorption of objects on

surfaces. Although the model is simple to describe, it attracted the scientific community

a lot as it provides basic concepts of the jamming phenomenon. In addition, at any

intermediate stage of the adsorption process, the adsorbed objects in the presence of

excluded volume interaction arrange in such a manner that corresponds to a disordered

system and therefore, the study of the percolation transition in such a system is quite

relevant. Over the last several decades, a large number of studies have been devoted

to investigate the role of shapes and sizes of the adsorbed objects on the percolation

properties of the system [138–143]. In this Chapter 1, we study how the percolation

and jamming properties of a system depend on the mechanism of relaxation.
1The work reported here is based on the paper “Jamming and percolation properties of random

sequential adsorption with relaxation”, Sumanta Kundu, Nuno A. M. Araújo, and S. S. Manna,
Phys. Rev. E 98, 062118 (2018).
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We introduce a variant of RSA model where the objects in the form of dimers are

adsorbed sequentially and irreversibly onto the sites of a regular lattice after going

through a well-defined relaxation dynamics. The deposition of a new dimer triggers the

relaxation dynamics when it partially overlaps with the previously adsorbed dimers and

during the relaxation, a series of dimer displacements may occur to accommodate the

new dimer. This leads to a monolayer formation of the adsorbed dimers. We argue that

this relaxation dynamics is somewhat different from the stochastic diffusion process

considered in the model of accelerated random sequential adsorption (ARSA) [124]. In

ARSA, an incoming object starts diffusing when it drops on top of the already adsorbed

objects and the diffusion continues until it finds an empty gap where it is then adsorbed

irreversibly [124, 144]. Here, based on our publication [113], we present the effect of

relaxation dynamics and anisotropy in the orientation of the adsorbed dimers on the

jamming and percolation transitions.

The Chapter is organized as follows. We start by describing our model in Sec. 5.2. We

present the characteristics of the jamming state and the percolation configuration when

the horizontal and vertical orientations of the dimers occur with equal probabilities in

Secs. 5.3 and 5.4, respectively. The effect of anisotropy on the jamming and percolation

transitions have been discussed in Sec. 5.5. Percolation transition using equal-oriented

dimers in the jamming state has been presented in Sec. 5.6. Finally, we summarize in

Sec. 5.7.

5.2 Model

An initially empty square lattice of size L× L with periodic boundary conditions, is

the substrate in our model. We consider sequential adsorption of dimers at random

positions onto the lattice sites. The two ends of the dimer reside on two neighboring

sites of the lattice and thus, adsorption of each dimer occupies a pair of sites. At each

adsorption attempt, the orientation (either vertical or horizontal) of the dimer is first
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selected randomly with equal probability for both orientations. A pair of neighboring

sites are then selected accordingly at random and the dimer is deposited on them.

Depending on the occupation status of the pair of sites, three possible scenarios

may arise. First, if the pair of sites are both occupied by previously adsorbed dimers,

adsorption fails. Second, if both sites are vacant, the adsorption is successful and the

dimer is irreversibly adsorbed on them. Third, if only one of the sites is vacant, a

sequence of dimer displacements is triggered, described as follows. When the deposited

dimer (A) partially overlaps with a previously adsorbed dimer (B) at one end, the

dimer B is displaced by a unit distance along its other end, keeping A fixed. The

displaced dimer may again partially overlap with another dimer (C) leading to similar

displacement of C. In this way the system of adsorbed dimers thus relaxes and eventually

reaches a stable state when no more overlapping of dimers exists. This concerted move

completes the “successful” adsorption of dimer A through a relaxation dynamics. Here

one assumes the existence of two infinitely separated time scales, as we consider that

the relaxation process is always faster than the inter-arrival time of deposited dimers.

The trail of dimer displacements originated by depositing A constitute a path which is

referred as the “relaxation path”. It has been observed that often a relaxation path

forms a closed loop. In such a case, the deposition attempt fails and the deposited

dimer is discarded. The sequence of dimer adsorption attempts is continued till a

jamming state is reached, where no more dimers can be adsorbed.

At any arbitrary stage of the adsorption process, the coverage of the surface is

defined as p = 2n/L2, where n is the number of adsorbed dimers. Since there are

no desorption events, once a site becomes occupied it remains occupied, though the

adsorbed dimers relax their positions during the relaxation process. After relaxation,

a stable state configuration is reached where no two dimers overlap with each other.

In a stable state configuration of adsorbed dimers, any two neighboring occupied sites

are assumed to be connected and said to belong in the same cluster. The number

of occupied sites in a cluster is defined as the size of the cluster. An existing cluster
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(a) (b)

Figure 5.1: Typical jamming state configuration of the dimers on a 64 × 64 square
lattice for the random sequential adsorption model (a) with and (b) without relaxation.
The dimers oriented in the horizontal and vertical directions have been painted in red
and blue colors, respectively. The single vacant sites are represented by white color.

increases its size by two when at least one of the two end sites occupied by a newly

adsorbed dimer becomes nearest neighbor of any of the sites in the cluster. When a

new incoming dimer lands along the perimeter of such a cluster (partially overlapping

it), that triggers the relaxation dynamics and it stops by displacing a dimer situated at

another position on the perimeter of the cluster. Clearly, the relaxation path generated

through this process is not at all random in the sense that the dimer displacements

take place deterministically, as it is given by the orientation of the dimers adsorbed

previously. Therefore, this relaxation is somewhat different from the stochastic diffusion

process considered in the ARSA model.

For small values of p, there exists many small isolated clusters. Therefore, the

adsorption of dimers is mainly uncorrelated and the occurrence of relaxation process

is negligible. On the other hand, for intermediate values of p, successful adsorptions

are often associated with relaxation. In this case, the newly occupied pair of sites are

positioned at the two ends of the relaxation path and are separated by a distance larger

than unity. As discussed above, these two sites are perimeter sites. Given one of the

sites, the other can be determined from the overall configuration since the orientations
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Figure 5.2: The width ∆(L) of the jamming transition has been plotted against L on a
log-log scale for the lattice sizes L = 256, 512, 1024, 2048, and 4096. The fitted straight
line has a slope 1.002(3).

of the adsorbed dimers belonging to the cluster are already known. Evidently, this

introduces spatial correlations between the occupied sites. Such a source of correlation

is absent in the model of RSA without relaxation. By further increasing the value

of p, the clusters of occupied sites start merging and a percolation transition occurs

when a giant cluster emerges that spans between two opposite sides of the lattice. The

percolation threshold pc is defined as the minimum value of p for which such a giant

cluster exists in the system. This percolation transition is observed before the jamming

transition.

5.3 Jamming Transition

In Fig. 5.1(a), we show a typical jamming state configuration of RSA model with

relaxation. A similar jamming configuration obtained for RSA without relaxation has

been shown in Fig. 5.1(b) for comparison. By visual inspection, it is clear that the

jamming state coverage is higher for our RSA model than that of the RSA without

relaxation. This is because, the relaxation dynamics promotes the reorganization

and packs the dimers more densely. The averaged fraction of occupied sites at the

jamming state defines the jamming coverage pj. Numerically, we have estimated the
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Figure 5.3: Plot of the binned data of the relaxation time distribution D(T ) for the
entire process of adsorption on a log-lin scale using the lattice sizes L = 256 (black),
512 (red), 1024 (green), and 2048 (blue).

jamming state coverage pj(L) and its standard deviation ∆(L) = (〈p2
j〉 − 〈pj〉2)1/2 for

different system sizes L = 256, 512, 1024, 2048, and 4096. We observe no significant

finite-size effects for pj(L) and its value has been estimated to be 0.99049(3) compared

to 0.90682(3) for RSA without relaxation. On the other hand, the value of ∆(L) indeed

decreases systematically with L. To see the variation, we plot ∆(L) against L on a

double logarithmic scale in Fig. 5.2 and find that all the data points fall on a straight

line. This suggests a power-law decay: ∆(L) ∼ L−1/νj . From slope we have estimated

νj = 1.002(3), consistent with a linear decay with 1/L. A similar analysis also predicts

νj ≈ 1 for the RSA without relaxation.

5.3.1 Relaxation Time

The system reorganizes during the relaxation process originated by depositing a dimer.

The duration of time associated with the relaxation process is termed as the “relaxation

time” T and it corresponds to the number of successive dimer displacements before

a successful adsorption. This relaxation time has been measured for every dimer

deposited from the beginning till the jamming state and its distribution D(T ) is plotted

on a semi-log scale for four different system sizes in Fig. 5.3. Clearly, the tail of the
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distribution decays exponentially in time with a characteristic time of ≈ 11.7, in units

of dimer displacements. This indicates that the relaxation process reorganizes the

system not in all length scales.

5.4 Percolation Transition

As the surface coverage p increases, the size of the largest cluster grows monotonically.

Typically, the size of a cluster grows by two factors, e.g., when additional dimers join

the cluster at its surface and secondly, when two clusters merge to form a single cluster.

At a specific value of p = pc, the system undergoes a percolation transition when a

single cluster first connects two opposite sides of the system through a spanning path.

Numerically, the precise value of the percolation threshold pαc for a specific run α is

determined using the bisection method [113] described as follows. We select a pair

of initial values of p, namely, ph and pl such that there exists a global connectivity

through the spanning cluster for p = ph, but not for p = pl. Starting from an empty

lattice the adsorption is continued till the surface coverage p = (ph + pl)/2 is reached.

Here, imposing periodic boundary conditions along the horizontal direction the global

connectivity between the top and the bottom sides of the lattice is checked using the

burning algorithm [56]. If the opposite sides of the lattice are connected by the same

cluster, ph is reduced to p, otherwise pl is raised to p. In this way, the interval is

successively bisected and the process is terminated when ph − pl < 2/L2. At this stage,

(ph + pl)/2 defines the value of pαc for the run α. The entire procedure is then repeated

for a large number of independent runs and the individual percolation thresholds are

averaged to obtain the estimated value of the percolation threshold pc(L) = 〈pαc (L)〉 for

the lattice size L. This calculation is then repeated for different values of L and finally,

pc(L) values are extrapolated to obtain the asymptotic value pc in the limit L→∞

using,

pc(L) = pc − AL−1/ν , (5.1)
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Figure 5.4: Plot of the percolation threshold pc(L) against L−1/ν with 1/ν = 0.756(6) for
the lattice sizes L = 512, 1024, 2048, and 4096. The asymptotic value of the percolation
threshold in the limit L→∞ has been estimated to be 0.5140(1).

where ν is recognized as the correlation length exponent in percolation theory and its

value is 4/3 for ordinary percolation in two dimensions [6]. Accordingly, the obtained

values of pc(L) are plotted against L−1/ν in Fig. 5.4. Tuning the value of 1/ν, the

data is found to be fit best by a straight line (using the least-squares fit of a straight

line with minimal error) for 1/ν = 0.756(6). By extrapolating the fitted line to the

limit L→∞, we estimate pc = 0.5140(1). A similar procedure yields the value of pc

= 0.5618(1) for the RSA without relaxation and it agrees within error bar with the

value of pc reported in Refs. [145]. Clearly, the relaxation process helps the system to

percolate at lower surface coverage.

Qualitatively, one can try to understand the reduction in the value of percolation

threshold in the following way. Let us consider a situation where a single vacant site

P separates two distinct clusters connected to the top and bottom boundaries of the

lattice. In RSA without relaxation, it needs a dimer to be adsorbed precisely on

this vacant site to connect the two clusters which results in a percolating state. In

comparison, in our model with relaxation, a dimer may be deposited at many other

locations, yet due to the relaxation process another dimer may be displaced in such

way so that the site P becomes occupied and the two clusters merge together.

To investigate the critical properties of the percolation transition of RSA with

97



Chapter 5 5.5. Effect of Anisotropy

2
9

2
10

2
11

2
12

L

0.20

0.21

0.22

0.23

0.24

0.25

0.26

<
s

m
a
x
(p

c
,L

)>
 /

 L
2

Figure 5.5: Log-log plot of the scaled average size of the largest cluster 〈smax(pc, L)〉/L2

at the percolation threshold pc for the lattice sizes L = 512, 1024, 2048, and 4096 gives
the estimate of the fractal dimension df = 1.892(3).

relaxation, several critical exponents have been estimated. Using extensive numerical

simulations, at p = pc, we have determined the fractal dimension of the largest cluster

df = 1.892(3) (plot is shown in Fig. 5.5), the exponent γ/ν = 1.790(2) associated

with the second moment of the cluster size distribution and the fractal dimension of

the shortest path dl = 1.1307(5). These values are consistent, within error bars, with

the values known for the ordinary percolation in two dimensions, namely, df = 91/48,

γ/ν = 43/24 [6] and dl = 1.13077(2) [44].

5.5 Effect of Anisotropy

So far, we have considered that the orientation of the depositing dimers (either vertical or

horizontal) is drawn at random with equal probability. We now consider the anisotropic

case, where one orientation is preferentially selected compared to the other. More

specifically, when the nth dimer is deposited, its orientation is randomly selected with

probability pv or 1 − pv for vertical and horizontal, respectively. In this case, if a

deposition attempt fails, another dimer is deposited with the same orientation but at

another randomly selected location until the adsorption is successful.
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Figure 5.6: For L = 1024, the jamming state coverage pj(pv) has been plotted against
the selection probability pv of the vertically oriented dimers. The data points are based
on the averages over (at least) 105 configurations.

5.5.1 Jamming Coverage

For pv > 1/2, we observe that the clusters are elongated along the vertical direction.

For this regime, the jamming state corresponds to a configuration where no more

vertically oriented dimers can be adsorbed. It turned out that the anisotropy affects

significantly the value of the jamming state coverage pj(pv). The variation of pj(pv)

against 1/2 6 pv 6 1 has been exhibited in Fig. 5.6, with pj = 0.99049 for pv = 1/2,

a minimum value of 0.98605 for pv ≈ 0.71, and 1.0 for pv = 1. This variation does

not show any appreciable finite-size effects. We also observed that the exponent νj

that characterizes the fluctuation of the jamming state coverage consistently remains

unity (within error bars) for all pv values. It may be noted that for the RSA without

relaxation, pj(pv) monotonically decreases from 0.9068 for pv = 1/2 to 1− e−2 ≈ 0.8647

for pv = 1 [146].

5.5.2 Percolation Threshold

The effect of anisotropy on the percolation threshold has also been studied. For a fixed

value of the anisotropy parameter pv, the percolation threshold pc(pv) in the limit of

L → ∞ has been obtained using the values of pc(pv, L) for L = 256, 512, 1024, 2048,
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Figure 5.7: Log-log plot of the deviation of the percolation threshold pc(pv)− pc(1/2)
against pv − 1/2, pv being the selection probability of the vertically oriented dimers,
with pc(1/2) = 0.5140(1) and 0.5619(1) for the RSA with (open circles) and without
(filled circles) relaxation, respectively. Slopes of the fitted straight lines have been
measured as 2.05(6) and 2.07(7), respectively.

and 4096, and an extrapolation given by Eq. (5.1). The deviation of the percolation

threshold from its value for the isotropic case, i.e., pc(pv)− pc(1/2) has been observed

to follow a power-law with pv − 1/2 (Fig. 5.7). On a double logarithmic scale the

data points fit quite nicely with a straight line with slope = 2.05(6). Therefore, we

conjecture that pc(pv)− pc(1/2) ∼ (pv − 1/2)2. Our simulation results also predict that

this behavior holds for the RSA without relaxation (Fig. 5.7). In Table 5.1, the values

of pc(pv) for a few values of pv are listed for RSA with and without relaxation.

To identify the universality class of the percolation transition for the anisotropic

version of the model, as before we have measured a set of critical exponents, namely

ν, γ, df and dl for several values of pv. It has been observed that the exponents values for

RSA with and without relaxation are consistent within error bars with their respective

values for the ordinary percolation in two dimensions.

5.6 Percolation of Equal-oriented Dimers

Let us now distinguish the clusters of adsorbed dimers by the orientation of the

corresponding dimers in the jamming state. The size s of a cluster is the number
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Table 5.1: Our numerical estimates of the percolation threshold pc(pv) in the limit
L→∞, for different values of the selection probability pv of vertically oriented dimers
for RSA with and without relaxation. Every reported value has an error bar not more
than 2 in the last digit.

pc(pv)

pv RSA with relaxation RSA without relaxation

0.50 0.5140 0.5619
0.58 0.5150 0.5624
0.66 0.5181 0.5640
0.74 0.5232 0.5668
0.82 0.5306 0.5708
0.90 0.5407 0.5764
0.98 0.5539 0.5840
1.00 0.5578 0.5862

of sites occupied by the cluster. In our simulations, we separate out the clusters

of occupied sites by the vertically oriented dimers from the horizontal ones and the

global connectivity is examined through the neighboring sites occupied by the vertical

dimers. It is well known that for RSA without relaxation with pv = 1/2, the largest

among all the clusters does not form a spanning path between two opposite boundaries

of the lattice [147]. As our model with relaxation dynamics enables more surface

coverage, we thus address the question of whether such a spanning cluster appears with

relaxation. Identifying different clusters using the Burning algorithm [56] and using

many independent configurations, we find that the cluster size distribution D(s) follows

an exponential distribution as shown in Fig. 5.8(a). Further, the average size of the

largest cluster 〈smax(pv, L)〉 is observed to grow logarithmically with the size of the

system [Fig. 5.8(b)]. These results clearly indicate that for pv = 1/2, there exist no

such spanning cluster and therefore, the system remains in the sub-critical phase of the

percolation transition, when clusters are distinguished by the orientation of the dimers

in the jamming state. However, 〈smax(pv, L)〉 for the RSA with relaxation is higher in

comparison to the RSA without relaxation and we see that the ratio between them

asymptotically approaches a value ≈ 2.23.
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Figure 5.8: Right at the jamming state for the anisotropy parameter pv = 1/2, (a) the
binned data for cluster size distribution D(s) of the vertically oriented dimers has been
exhibited on a semi-log scale for L = 256 (black), 512 (red), 1024 (green), 2048 (blue),
and 4096 (magenta); (b) the average size of the largest cluster 〈smax(pv, L)〉 for the
same values of L has been plotted against L on a lin-log scale. The data points fit
considerably well with a straight line indicating the logarithmic growth of the largest
cluster.

As the value of pv is increased from 1/2, the size of the largest cluster 〈smax(pv, L)〉

monotonically increases and at a critical value of pv = pvc, its size becomes so large

that first time it spans across the system and thus, percolation of equal-oriented dimers

occurs. In numerical simulations, imposing periodic boundary conditions along the

horizontal direction, global connectivity is checked along the vertical direction.

Tuning the value of pv and averaging over many uncorrelated jamming state config-

urations for each pv, we plot the percolation probability Π(pv, L) in Fig. 5.9(a) for three

different values of the surface sizes. The curves become more and more sharp as L is

increased. All these curves intersect approximately at the same point [pvc,Π(pvc)] with

pvc ≈ 0.5577 and Π(pvc) ≈ 0.61, which is slightly lower than the value 0.636454001 [136]

obtained using Cardy’s formula for cylindrical geometry [137]. Figure 5.9(b), exhibits

a scaling plot of Π(pv, L) against (pv − pvc)L1/ν . The best data collapse for all three

system sizes corresponds to pvc = 0.5577(5) and 1/ν = 0.754(5), implying a finite-size

scaling form

Π(pv, L) = F [(pv − pvc)L1/ν ]. (5.2)
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Figure 5.9: (a) For L = 256 (black), 512 (red) and 1024 (blue) the percolation
probability Π(pv, L) has been plotted against the probability pv of selection of the
vertically oriented dimers. (b) Scaling plot of the same data as in (a). A plot of Π(pv, L)
against (pv − pvc)L1/ν using pvc = 0.5577(5) and 1/ν = 0.754(5) exhibits a nice data
collapse.

Similarly, scaling analyses have been performed for the order parameter Ω(pv, L) =

〈smax(pv, L)〉/L2 and susceptibility, defined by the fluctuation of the order parameter

as χ(pv, L) = 〈Ω(pv, L)2〉 − 〈Ω(pv, L)〉2 (not shown here). A finite-size scaling form as

in Eq. (1.5) works very well for the order parameter. Again, for the susceptibility usual

scaling form as the ordinary percolation holds good. We also find that the values of the

associated scaling exponents, β and γ follow within error bars the hyperscaling relation

2β/ν + γ/ν = 2 in two dimensions [6].

The second moment of the cluster size distribution M ′
2 is defined as

M ′
2 =

∑
k

s2
k/L

2 − 〈smax〉/L2 (5.3)

where, sk is the size of the cluster k. The variation of M ′
2(pv, L) against pv has been

exhibited in Fig. 5.10(a) for the same three system sizes. By suitably scaling the

abscissa and ordinate when the same data are re-plotted in Fig. 5.10(b), an excellent

data collapse is observed using pvc = 0.5577(5), 1/ν = 0.754(5) and γ/ν = 1.795(5),
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Figure 5.10: (a) For L = 256 (black), 512 (red) and 1024 (blue) the scaled second
moment M ′

2(pv, L)/L2 has been plotted against the selection probability pv of the
vertically oriented dimers. (b) Finite-size scaling of the same data as in (a). Plot of the
re-scaled second moment M ′

2(pv, L)L−γ/ν with the scaling variable (pv − pvc)L1/ν using
pvc = 0.5577(5), 1/ν = 0.754(5) and γ/ν = 1.795(5) exhibits a nice data collapse.

indicating a scaling form

M ′
2(pv, L) = Lγ/νG[(pv − pvc)L1/ν ]. (5.4)

The same set of scaling analyses have been performed for RSA without relaxation, and

we estimated pvc = 0.6056(5).

5.7 Summary

To summarize, we have introduced and studied a variant of random sequential adsorption

(RSA) model in which the objects are adsorbed on a two-dimensional surface after

going through a well-defined relaxation dynamics. Specifically, we consider sequential

and irreversible adsorption of dimers onto the sites of a square lattice at random

positions. When a new incoming dimer partially overlaps with a previously adsorbed

dimer, the relaxation dynamics is triggered and during relaxation, a sequence of dimer

displacements may take place to accommodate the new dimer. The post-relaxation

state is characterized by a monolayer formation of non-overlapping dimers. Every
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adsorption followed by the relaxation dynamics includes a pair of new occupied sites

separated by a distance larger than unity; given one of the sites the other can be

determined from the configuration of dimers adsorbed previously. Therefore, spatial

correlations develop in the system. Considering any two neighboring occupied sites

as connected, a percolation transition has been observed. when a cluster of occupied

sites first spans across the system. Further, the kinetics of adsorption ceases when a

jamming state is reached where no more dimers can be adsorbed. The effect of the

relaxation dynamics and anisotropy in the orientation of the adsorbed dimers on the

percolation and jamming transitions have been investigated here in detail.

We find that the percolation transition for the isotropic case occurs at a critical

density of occupied sites pc = 0.5140(1). The increase of anisotropy, pv, of the occurrence

of vertically oriented dimers results in an increase of the percolation threshold pc. The

value of pc in the entire range of 1/2 6 pv 6 1 has been found to be smaller for our

model with relaxation compared to the RSA without relaxation. Estimation of different

critical exponents at and around pc using extensive numerical simulations lead us to

conclude that, despite the developed spatial correlations, the model belongs to the

same universality class as the ordinary percolation.

The relaxation dynamics helps packing the dimers more densely and thus, the

jamming state coverage is higher for RSA with relaxation than without relaxation.

Interestingly, a non-monotonic variation of the jamming state coverage with the strength

of anisotropy pv has been observed for RSA with relaxation. Further, in the jamming

state, a percolation transition through the cluster of sites occupied by the vertically

oriented dimers is observed when the control variable pv is tuned to the critical value

pvc = 0.5577(5). Also here, the directionality does not affect the critical (universal)

properties of the percolation transition.

For future investigations, one can study the effect of the size of depositing objects,

size dispersion and the dimensionality of the surface on the jamming and percolation

transitions in the RSA model with relaxation.
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